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Abstract

We develop and analyze a framework for two-stage methods with
EB-splines, applicable to continuous and discrete approximation prob-
lems. In particular, we propose a weighted discrete least squares fit
that yields optimal convergence rates for sufficiently dense data on
Lipschitz domains in R

d.

1 Introduction

The basic idea of a two-stage approximation method, introduced by Schu-
maker in [23], consists in using local approximations in the first stage as input
for a piecewise polynomial quasi-interpolation operator in the second stage.
This combines high flexibility in fitting local features of the data with con-
venient representation of the approximation suitable for efficient processing
such as fast evaluation and surface visualization, see [5, 6, 7, 12]. Moreover,
the two-stage methods are naturally parallelizable and, in contrast to the
approaches based on a directly computed global approximation [8], do not
require solving any large linear systems.

One of the most prominent types of piecewise polynomials used in ge-
ometric modeling are tensor product B-splines. They are often preferred
thanks to their simple uniform structure and efficient implementation. Dis-
crete least squares approximation with B-splines is the method of choice in
many applications, like reverse engineering or car body design. However,
when approximating functions or data defined on a non-rectangular domain

∗Supported in part by a Research Fellowship from the Alexander von Humboldt Foun-
dation.
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(b) Approximation with standard B-splines

Figure 1: Large error near boundary

Ω, the trimming required at the boundary leads to severe problems because
the basis functions typically lose their stability when restricted to Ω. Fig-
ure 1 illustrates a typical problem arising in scattered data fitting, where a
function is approximated from its values at a finite set of data sites. Here,
the domain Ω is the disk with radius r = 2.5 centered at the origin. The
function f : Ω ∋ (x, y) 7→ sin(x) + y2 is to be approximated using its values
on a finite set of evenly distributed data sites in the discrete least squares
sense by biquadratic tensor product B-splines with integer knots. Since f is
defined only on Ω, it makes sense to restrict also the approximant to that
set. Hence, only the 56 B-splines whose support intersects Ω are relevant for
solving the problem, and all others are disregarded. The condition number of
the normal equation for determining the spline coefficients is about 2.5 ·1013,
indicating a loss of stability of the standard B-spline basis. However, diago-
nal preconditioning reduces the condition number to a modest value of less
than 1000 so that the system can be solved accurately. This observation is in
line with the results in [21] concerning stabilization of B-splines by normal-
ization. The maximal error at the data sites is less than 0.01. By contrast,
the maximal deviation between the given function and the approximating
spline on all of the disk is more than 100 times larger, where the peaks are
located near the boundary, see Figure 1(b). This problem, shown here in a
particularly drastic case, is persistent, even when using very dense data sets.
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Figure 2: Uneven data distribution

To overcome these difficulties, we suggest the use of extended B-splines
(EB-splines), as introduced in [15, 13]. The basic idea is that B-splines
supported near the boundary of the domain are coupled with inner ones.
This process yields a stable basis, what is important from a practical point
of view. However, boundary artifacts, as shown above, are related to the
approximation space itself, and occur independent of the chosen basis. It
was observed in [14], and will be proven here, that approximation in EB-
spline spaces avoids undesirable behavior near the boundary and provides
optimal convergence on all of the domain.

Even when using well suited bases there is another subtle problem with
ordinary discrete least squares fits. It arises when using unevenly distributed
data sited, see [19] for a similar discussion in the context of moving least
squares methods. We illustrate this problem by a slightly artificial example,
presented in Figure 2. Here, the function f(x, y) = 1−x2−y2 is approximated
on [−0.5, 0.5]2 by bilinear polynomials. We assume that a large number
of data points lies on a segment of the circle obtained by projecting the
intersection curve of the graphs of s(x, y) = kx + 0.75 and f into the xy-
plane. As illustrated in Figure 2(b), this uneven distribution of data sites
forces the discrete least squares fit to deviate from f by more than k/24, see
the calculations in Example 5.3. Since k may be chosen arbitrary large, the
discrete least squares fit cannot guarantee reasonably small approximation
error. By contrast, an optimal fit on the same data with respect to the
discrete max-norm would yield a maximal error of order h2.
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The purpose of this paper is to develop and analyze a framework for
two-stage methods with EB-splines, free of the problems discussed above. In
particular, we propose a local weighted least squares fit which yields optimal
convergence rates for sufficiently dense data on Lipschitz domains in R

d.
Since the local approximations in the first stage have to be performed

on subdomains of Ω which may inherit a complicated boundary from Ω,
and by considerations of efficiency, we propose to use EB-splines also as
the local approximation tool. Therefore we need error bounds which do
not include constants depending on the subdomains in an undisclosed way.
Unfortunately, the Bramble-Hilbert Lemma in its known variants can only
be used on relatively simple domains (e.g. star-shaped or convex), and the
standard approach of applying an extension theorem for Sobolev spaces is
ruled out because it makes the constants in the local error bounds dependent
on the subdomains. Instead, we develop a new approach based on extending
any subset of Ω to a graph-bounded set.

The paper is organized as follows. In Section 2 we establish a Bramble-
Hilbert-type lemma for sufficiently small subsets of Ω in the particular form
required later on. Section 3 is devoted to EB-splines and some of their basic
properties. Then, in Section 4, two-stage methods for EB-splines are defined
and analyzed. These results, which are fairly general, are specialized to local
least squares techniques in Section 5. While the continuous case is easily set-
tled, discrete problems require more care. We consider both standard least
squares techniques and a weighted fit that yields qualitatively optimal ap-
proximation results. Finally, in Section 6, we confirm our theoretical results
by numerical experiments.

2 Local polynomial approximation

In this paper, we consider the approximation of functions on a bounded
connected Lipschitz domain Ω ⊂ R

d, characterized as follows: For some
numbers δ, µ > 0 and each ℓ in some finite index set Λ ⊂ N, there is an open
cube Yℓ := (0, ηℓ)

d−1, a function ζℓ : Yℓ → [δ,∞) with Lipschitz constant

sup
y,y′∈Yℓ

|ζℓ(y)− ζℓ(y
′)|

‖y − y′‖∞
≤ µ,

and an isometric map Iℓ : R
d → R

d such that

Ω =
⋃

ℓ∈Λ

Iℓ(Ωℓ), Ωℓ := {(y, z) ∈ Yℓ × R : 0 < z < ζℓ(y)}.
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Further, the sets Iℓ(Ωℓ) overlap such that the subsets Ω′
ℓ := {(y, z) ∈ Ωℓ :

δ < y < ηℓ − δ, z > δ} still provide a covering of Ω, i.e., Ω =
⋃

ℓ∈Λ Iℓ(Ω
′
ℓ).

Note that every bounded domain Ω with a locally Lipschitz boundary
satisfies the above conditions for suitable µ and δ. Indeed, in this case every
point inside the domain belongs to a cube contained in Ω, and every point on
the boundary of Ω has a neighborhood whose intersection with the boundary
is the graph of a Lipschitz continuous function [1]. By choosing a suitable
cube inside this neighborhood, and then extracting a finite cover thanks
to the compactness of Ω, we will get the desired sets Ωℓ and isometries
Iℓ. However, the parameter δ introduced here plays a prominent role in our
analysis as it provides an upper bound on the size of subsets for which various
estimates hold, see e.g., Lemma 2.3 and equation (14). Therefore, for any
given domain it is desirable to have δ as large as possible. It is not difficult
to show, for example, that for the unit disk in 2D the above definition holds
with any δ <

√
2/2.

Let p, p′ ∈ [1,∞] be a pair of conjugate exponents, related by 1/p+1/p′ =
1. As usual, we set 1/p = 0 for p = ∞. The Sobolev space W n

p (Ω) of order
n ∈ N is the closure of the set of smooth functions on Ω with respect to the
norm

‖f‖Wn
p (Ω) :=

∑

k≤n

|f |W k
p (Ω), |f |W k

p (Ω) :=
∑

|α|=k

‖f (α)‖Lp(Ω),

where |α| = α1 + · · ·+ αd and f (α) := ∂|α|f
∂α1x1···∂

αdxd
.

Let P be the space of real-valued d-variate polynomials. We define the
subspace P

n of polynomials of coordinate order n and the subspace P̃
n of

polynomials of total order n by

P
n := {π ∈ P : π(α) = 0 for all α with max

i
αi = n},

P̃
n := {π ∈ P : π(α) = 0 for all α with |α| = n},

respectively. Clearly, P̃n ⊂ P
n.

Throughout the paper, the order n ∈ N, the space dimension d ≥ 2, the
exponent p ∈ [1,∞], and the domain Ω according to the above construction,
are regarded as fixed parameters. Equally, some size factor r > 1 and some
bound ̺ > 0 on the distortion of knot sequences, to be introduced in the
next section, are fixed. To formalize the concept of generic constants, we
introduce relations 4 and <, defined as follows. Given the fixed parameters
n, d, p,Ω, r, ̺, it is

A 4 B and B < A

if and only if there exists a positive real constant c such that A ≤ cB for any
instance of the real-valued terms A and B within some range defined in the
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context.

Definition 2.1 Given a continuous function ζ : (0, 1)d−1 → [1, 2], and an
isometry I : Rd → R

d, the corresponding graph-bounded set γ ⊂ R
d with

scaling factor q > 0 is defined by

γ := I(qγ∗), γ∗ :=
{
(y, z) ∈ (0, 1)d−1 × R : 0 < z < ζ(y)

}
.

The Bramble-Hilbert Lemma is the key to establishing local approxima-
tion properties of splines. In principle, the following variant for the graph-
bounded sets could be derived from results in [22], but we include a proof
for the sake of completeness.

Lemma 2.2 For any graph-bounded set γ with scaling factor q, and for any
function f ∈ W n

p (γ), there exists a polynomial π ∈ P̃
n with

|f − π|Wm
p (γ) 4 qn−m |f |Wn

p (γ), m ≤ n. (1)

Proof: Under isometries, P̃n is invariant and Sobolev semi-norms change at
most by a factor depending only on the order. Further, (1) is invariant with
respect to scaling. Hence, without loss of generality, we may assume that the
isometry I is the identity, and that q = 1, i.e., γ = γ∗. Let γ0 := (0, 1)d ⊂ γ.
By the Bramble-Hilbert Lemma [3], there exists a polynomial π ∈ P̃

n such
that

|f − π|Wm
p (γ0) 4 |f |Wn

p (γ0), m ≤ n, (2)

We show that the same polynomial π satisfies the required estimate on γ.
To this end, we prove

|f − π|Wm
p (γ) 4 |f |Wn

p (γ), m ≤ n,

by induction on m, decrementing from the case m = n, which is trivial.
Assume that the assertion is true for some m ≤ n. For any multi-index
α of total order |α| = m − 1, consider the function ∆ := f (α) − π(α). For
y ∈ Y := (0, 1)d−1 and 0 < z < ζ(y), let

∆1(y, z) := ∆(y, z/ζ(y)), ∆2(y, z) :=

∫ ζ(y)

0

|∂z∆(y, t)| dt.

Clearly,

|∆(y, z)−∆1(y, z)| =
∣∣∣
∫ z

z/ζ(y)

∂z∆(y, t) dt
∣∣∣ ≤ ∆2(y, z),
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which implies |∆| ≤ |∆1| + |∆2|. First, substituting u = z/ζ(y) and using
(2), we obtain

‖∆1‖pLp(γ) ≤
∫

Y

∫ ζ(y)

0

|∆(y, z/ζ(y))|p dzdy ≤ 2

∫

Y

∫ 1

0

|∆(y, u)|p dudy

= 2 ‖∆‖pLp(γ0)
4 |f |pWn

p (γ0)
≤ |f |pWn

p (γ).

Second, by Hölder’s inequality and the induction hypothesis,

‖∆2‖pLp(γ) =

∫

Y

∫ ζ(y)

0

|∆2(y, z)|p dzdy ≤ 2p/p
′

∫

Y

∫ ζ(y)

0

∫ ζ(y)

0

|∂z∆(y, t)|p dtdzdy

≤ 21+p/p′
∫

Y

∫ ζ(y)

0

|∂z∆(y, t)|p dtdy = 2p‖∂z∆‖pLp(γ) 4 |f |pWn
p (γ).

Combining the two estimates and summing over all α concludes the proof.
2

The size |ω| of a set ω ⊂ Ω is defined as the max-norm of the diagonal of its
bounding box. Polynomial approximation in a neighborhood of sufficiently
small subsets of Ω will be established by the following observation:

Lemma 2.3 For any subset γ ⊂ Ω of size |γ| ≤ δ/(2
√
d), there exists a

graph-bounded set γ∗ with scaling factor q :=
√
d|γ| and size |γ∗| ≤ (d+1)|γ|,

such that γ ⊂ γ∗ ⊂ Ω. Hence, there exists a polynomial π ∈ P̃
n such that

|f − π|Wm
p (γ) 4 |γ|n−m |f |Wn

p (γ∗), m ≤ n.

Proof: Let the index ℓ ∈ Λ be chosen such that γ ∩ Iℓ(Ω
′
ℓ) is not empty.

There exists a cube γ′ := (y′, z′) + (0, q)d of size q containing the pre-image
of γ, i.e., I−1

ℓ (γ) ⊂ γ′. Since q ≤ δ/2 and γ′ contains points in Ω′
ℓ, we have

q ≤ y′ ≤ ηℓ − q and z′ ≥ q. Hence,

γ′′ :=
{
(y, z) ∈ (y′, y′ + q)d−1 × R : z′ − q < z < min(z′ + q, ζℓ(y))

}

is a graph-bounded set with scaling factor q and I−1
ℓ (γ) ⊂ γ′′ ⊂ Ωℓ, implying

that γ∗ := Iℓ(γ
′′) is a graph-bounded set with scaling factor q and γ ⊂ γ∗ ⊂

Ω. The size of γ∗ is bounded by q
√
d+ 1 ≤ (d + 1)|γ|. The last statement

follows from Lemma 2.2. 2
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3 Extended B-Splines

In this section, we give a brief introduction to the construction of extended
B-splines and to some of their properties. More details on this topic can be
found in the web-spline literature, e.g., in [13], [14].

Let
T := [T 1, T 2, . . . , T d]

be a multivariate knot sequence for tensor product splines on R
d. For sim-

plicity, we assume that the knots tιi forming the bi-infinite sequence T ι are
strictly monotone increasing and diverging, i.e.,

tιi < tιi+1, i ∈ Z,

and
lim

i→−∞
tιi = −∞, lim

i→∞
tιi = ∞

for all ι = 1, . . . , d. The grid cell Γk corresponding to the index k =
(k1, . . . , kd) ∈ Z

d is defined as the half-open box Γk := [t1k1 , t
1
k1+1) × · · · ×

[td
kd
, td

kd+1
). Let lιkι := tιkι+1 − tιkι , ι = 1, . . . , d, be the side lengths of Γk. We

assume that the cells are uniformly bounded, and define the grid width h as
the maximal side length of all cells,

h := sup
k∈Zd

max
ι=1,...,d

lιkι .

The distortion of the knot sequence T , defined as the maximal ratio of side
lengths, is assumed to be bounded by some constant ̺,

( inf
k∈Zd

min
ι=1,...,d

lιkι)
−1h ≤ ̺.

Thus, a lower bound for all side lengths is lιkι ≥ h/̺. Throughout, the
grid width h ∈ (0, h0) is regarded as a variable, while the bound ̺ on the
distortion is one of the fixed parameters. A specific value for the maximal
grid width h0 will be given in (14).

In the following definition of extended B-splines, we will not only consider
the domain Ω but also certain subsets thereof whose size is comparable to
the grid width. These subsets will be used for local approximations in the
first stage of the two-stage methods described in Section 4. Given some size
factor r > 1, belonging to the list of fixed parameters, we define

WT :=
{
ω ⊂ Ω : ω is measurable and contains a grid cell Γk

}

W̃T :=
{
ω ⊂ Ω : ω is measurable and |ω| ≤ rh

}
,

W∗
T := WT ∩ W̃T .
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Subsets ω ∈ W̃T are called local sets and those inW∗
T local domains. Through-

out, to avoid trivial cases, we assume that the knot sequence is chosen fine
enough to guarantee that Ω contains at least one grid cell, i.e., WT and W∗

T

are not empty. In particular, Ω ∈ WT .
For k ∈ Z

d, the multivariate tensor product B-spline of coordinate order
n ∈ N with respect to the knot sequence T is denoted by

bk(x) := b1k1(x
1) · · · bdkd(xd),

where each bιkι is a univariate B-spline of order n with knots T ι. Its support
is the box

sk := [t1k1 , t
1
k1+n]× · · · × [tdkd , t

d
kd+n].

Given any ω ∈ WT , restricted grid cells and restricted supports are defined
by

Γω,k := Γk ∩ ω, sω,k := sk ∩ ω, k ∈ Z
d,

respectively. With
Kω := {k ∈ Z

d : sω,k 6= ∅}
the index set of relevant B-splines, the space of restrictions to ω of all tensor
product splines of coordinate order n with respect to the knot sequence T is
given by

Bn
ω := span{bk|ω : k ∈ Kω}.

Multivariate extended B-splines (EB-splines) introduced by Höllig et al
[15, 14] form a stable basis of a subspace of Bn

ω, which is sufficiently large to
provide full approximation power. For the sake of completeness, we briefly
recall here the construction. The basic idea is to adjoin the splines with small
support in ω to those whose supports overlap significantly with ω. More
precisely, the relevant B-splines are divided into two categories, namely the
inner B-splines with indices in the set

Iω :=
{
i ∈ Z

d : sω,i contains a grid cell Γk

}
,

and the outer B-splines with indices in Jω := Kω \ Iω. A grid cell Γk is called
inner grid cell if it is entirely contained in ω, i.e., Γk = Γω,k. The EB-splines
Bω,i : ω → R are linear combinations of the inner B-splines bi with outer
B-splines,

Bω,i := bi|ω +
∑

j∈Jω

ei,jbj|ω, i ∈ Iω.

The weights ei,j, called extension coefficients, are given by

ei,j := λ∗jpi,j .
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Here, λ∗j is the de Boor-Fix functional (see below) corresponding to the B-
spline bj, and pi,j is the polynomial in P

n that agrees with bi on the inner
grid cell “closest” in a sense to the center of the support of bj, see [15, 14].
The support of Bω,i is denoted by Sω,i, and the relation

sω,i ⊂ Sω,i

accounts for the ’E’ in EB-splines. By construction, each support Sω,i con-
tains at least one inner grid cell. Below, Γ′

i denotes one of these inner grid
cells,

Γ′
i ⊂ Sω,i, i ∈ Iω. (3)

The choice of Γ′
i is arbitrary in the sense that it does not affect the qualitative

form of our estimates. However, in applications, an appropriate choice might
yield quantitative improvement.

The space eBn
ω of extended splines on ω is spanned by the set of EB-splines,

eBn
ω := span {Bω,i : i ∈ Iω} ⊂ Bn

ω.

It is important to note that eBn
ω includes the space of all polynomials of

coordinate order n on ω,
P
n ⊂ eBn

ω. (4)

Collecting all EB-splines in a column vector Bω := [Bω,i]i∈Iω and a sequence
of real control points in a row vector aω := [ai]i∈Iω , extended splines can be
written as

aωBω :=
∑

i∈Iω

aiBω,i ∈ eBn
ω.

Both for local domains ω ∈ W∗
T and for the global domain Ω, EB-splines are

bounded in the following way:

Lemma 3.1 For ω ∈ W∗
T∪{Ω}, the size of the support of EB-splines satisfies

h 4 |Sω,i| 4 h, i ∈ Iω.

The extension coefficients are bounded by

∑

j∈Jω

|ei,j| 4 1, i ∈ Iω. (5)

Proof: Clearly, |Sω,i| ≥ h/̺. In the local case ω ∈ W∗
T , we have |Sω,i| ≤

rh by definition of W∗
T . The bound on the extension coefficients can be

established as follows: By affine invariance of the EB-splines construction,
we may assume h = 1 without loss of generality. The extension coefficients
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depend continuously on a finite number of knots so that boundedness is
implied by a compactness argument. In the global case ω = Ω, the proof
follows immediately by specializing the arguments in [14] to the case of knot
sequences with bounded distortion. 2

We note that the constants hidden in the inequalities of the lemma depend
crucially on r when ω ∈ W∗

T , and on µ when ω = Ω.
The next lemma summarizes the key stability properties of EB-splines:

Up to a normalization factor, they are uniformly stable with respect to p-
norms, and satisfy a Bernstein-type inequality.

Lemma 3.2 For any set ω ∈ W∗
T ∪ {Ω}, any sequence aω of control points,

and any m ≤ n,

hd/p‖aω‖p 4 ‖aωBω‖Lp(ω) 4 hd/p‖aω‖p (6)

|aωBω|Wm
p (ω) 4 hd/p−m‖aω‖p. (7)

Proof: The estimate (6) is an immediate consequence of Theorem 9 in [14].
To prove (7), we only consider the case p <∞, which is slightly more involved
than p = ∞. Let

Ik := {i ∈ Iω : Γω,k ∩ Sω,i 6= ∅}
Ki := {k ∈ Kω : Γω,k ∩ Sω,i 6= ∅},

and ak := [ai]i∈Ik . First, the number of indices in Ik is #Ik = nd so that

‖ak‖1 ≤ nd/p′‖ak‖p. Second, it is known that ‖b(α)k ‖L∞(Rd) 4 h−|α| for any
k ∈ Z

d and any multi-index α with |α| = m. Hence, by (5),

‖B(α)
ω,i ‖L∞(Rd) 4 h−|α|, i ∈ Iω.

Third, the volume of Γω,k is bounded by vol(Γω,k) ≤ hd. Together, we obtain

‖aωB(α)
ω ‖Lp(Γω,k) 4 h−|α| vol(Γω,k)

1/p‖ak‖1 ≤ hd/p−|α|‖ak‖p.

Therefore,

‖aωB(α)
ω ‖pLp(ω) =

∑

k∈Zd

∥∥∥
∑

i∈Iω

aω,iB
(α)
ω,i

∥∥∥
p

Lp(Γω,k)

4 hd−|α|p
∑

k∈Zd

∑

i∈Ik

|aω,i|p = hd−|α|p
∑

i∈Iω

∑

k∈Ki

|aω,i|p

≤ hd−|α|p
∑

i∈Iω

#Ki |aω,i|p.
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By Lemma 3.1, the side lengths of supports are bounded by Sω,i 4 h, while
the side lengths of grid cells are bounded by lιkι ≥ h/̺. Hence, we obtain
#Ki 4 1, and the proof is complete. 2

We define the de Boor-Fix functionals λ∗i corresponding to global EB-
splines BΩ as follows: For a sufficiently smooth function f , let

λ∗i f :=
∑

‖α‖∞<n

(−1)(n−1)d−|α|ψ
(n−1−α)
i (τi)f

(α)(τi), i ∈ IΩ. (8)

Here, ψi(x) := ψ1
i (x

1) · · ·ψd
i (x

d),

ψι
i(x

ι) :=
1

(n− 1)!

n−1∏

l=1

(tιiι+l − xι),

n − 1 − α := (n − 1 − α1, . . . , n − 1 − αd), and τi is an arbitrary point in
the interior of sΩ,i. These functionals are bi-orthogonal to standard tensor
product B-splines [2, Lemma IX.1], and hence also to EB-splines,

λ∗iBΩ,k = δi,k, i, k ∈ IΩ.

While being useful for many theoretical purposes, the de Boor-Fix func-
tionals are of limited use in practice since they are only applicable to func-
tions which are, at least locally, continuously differentiable up to order (n−
1, . . . , n − 1). This limitation can be overcome, for instance, by prepend-
ing an approximating polynomial, such as the average Taylor polynomial
[3], before applying λ∗i . Here, we suggest a different process: Since tensor-
product polynomials are reproduced by EB-splines, it is natural, and indeed
computationally more efficient to use the L2-projection of f to the space of
polynomials Pn as an intermediate approximation.

More precisely, let piα denote the normalized tensor product Legendre
polynomials of degree α ∈ N

d
0 on the inner grid cell Γ′

i ⊂ SΩ,i,
∫

Γ′
i

piαp
i
β = δα,β, α, β ∈ N

d
0, i ∈ IΩ.

Then the local L2-projection operators Li : L
1(Γ′

i) → P
n are given by

Lif =
∑

‖α‖∞<n

(∫

Γ′
i

piαf
)
piα, i ∈ IΩ.

We assume that the points τi in (8) satisfy τi ∈ Γ′
i, i ∈ IΩ, and define the

functionals λi : L
1(Γ′

i) → R by

λif := λ∗i (Lif) =

∫

Γ′
i

pif, pi :=
∑

‖α‖∞<n

(λ∗i p
i
α)p

i
α ∈ P

n.
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For any function f ∈ L1(Ω), we set λi(f) := λi(f|Γ′
i
).

Besides being applicable to functions which are barely integrable, these
functionals have the following properties:

Lemma 3.3 The functionals λi are biorthogonal to EB-splines,

λiBΩ,k = δi,k, i, k ∈ IΩ. (9)

Further, they reproduce polynomials according to
∑

i∈IΩ

(λiπ)BΩ,i = π for any π ∈ P
n. (10)

and are bounded on Lp(Γ′
i) by

|λif | 4 h−d/p‖f‖Lp(Γ′
i)
. (11)

Proof: Clearly, λiπ = λ∗i (Liπ) = λ∗iπ for any π ∈ P
n. Hence, λiBΩ,k =

λi(BΩ,k |Γ′
i
) = λ∗i (BΩ,k|Γ′

i
) = δi,k, which proves (9). By (4), π = aΩBΩ for

certain coefficients aΩ, and hence
∑

i∈IΩ

(λiaΩBΩ)BΩ,i =
∑

i∈IΩ

aiBΩ,i = π.

The estimate (11) is invariant under scaling and shifting knots. Hence, we
may assume Γ′

i = [0, 1]d without loss of generality. The number of knots
influencing the polynomial pi is at most (n − 1)d and, by boundedness of
the distortion, they all lie in the compact set [−n̺, n̺]d. Hence, since pi is
depending continuously on these knots, ‖pi‖Lp′ (Γ′

i)
4 1, and (11) follows from

Hölder’s inequality. 2

4 Two-stage methods

Let Pi : F (ωi) → Lp(Γ′
i), i ∈ IΩ, be a sequence of local approximation

operators, where Γ′
i ⊂ SΩ,i as in (3), each local domain ωi ∈ W∗

T satisfies
Γ′
i ⊂ ωi, and F (ωi) ⊂ L1(ωi) is a suitable function space. Thus, beforehand,

we assume essentially nothing but that each local approximation Pi(f|ωi
),

i ∈ IΩ, is L
p-integrable on the inner grid cell Γ′

i ⊂ SΩ,i. Keeping in mind
that the operator Pi must not make use of function values outside the local
domain ωi, we write Pif or Pi(f)instead if Pi(f|ωi

) to simplify notation.
A two-stage method for EB-spline approximation proceeds as follows:

First, the local approximations Pi(f) are determined. Second, a correspond-
ing extended spline is computed by applying suitable dual functionals, for
example λi defined in Section 3, to Pi(f).

13



Definition 4.1 The two-stage method P corresponding to the local approx-
imation operators [Pi]i∈IΩ is defined by

Pf :=
∑

i∈IΩ

(λiPi(f|ωi
))BΩ,i. (12)

The functionals λi used here could be replaced by any sequence of functionals
corresponding to a quasi-interpolant of order n, like the de Boor-Fix function-
als λ∗i . However, our special choice guarantees a wide range of applicability
by assuming low regularity of f and Pi(f), and the results and arguments
are prototypical.

Now, we are going to derive estimates on the error of the spline approxi-
mation

∆ := f − Pf
from the errors of the local approximations

∆i := f − Pif, i ∈ IΩ.

For the sake of convenience, we introduce the notations

∆i,p := ‖∆i‖Lp(Γ′
i)
, ∆Ω,p := [∆i,p]i∈IΩ , ‖∆Ω,p‖p =

(∑

i∈IΩ

∆p
i,p

)1/p

.

We show that the Sobolev error of a two-stage method can be split into two
terms, one of which is similar to the O(hn−m)-error of the best approximation
by EB-splines, and the second one that depends on the local errors ∆i.

Theorem 4.2 For any function f ∈ W n
p (Ω), the error ∆ = f − Pf is

bounded by

|∆|Wm
p (Ω) 4 hn−m

(
|f |Wn

p (Ω) + h−n‖∆Ω,p‖p
)
, m ≤ n. (13)

The proof is postponed until after Theorem 4.3 that gives a local error bound.
According to Lemma 3.1 there exists a constant c > 0 depending only on

the fixed parameters n, d, p,Ω, ̺ such that |SΩ,i| ≤ ch for all i ∈ IΩ. In the
following, we assume that the grid width h is sufficiently small,

h ≤ h0 :=
δ

2
√
d (r + 2c)

. (14)

For any σ ∈ W̃T , let

γ := σ ∪
⋃

i∈IΩ[σ]

Γ′
i,

14



where IΩ[σ] denotes the set of indices corresponding to EB-splines not van-
ishing on σ,

IΩ[σ] := {i ∈ IΩ : SΩ,i ∩ σ 6= ∅}.
Since |SΩ,i| ≤ ch, we have

|γ| ≤ |σ|+ 2 max
i∈IΩ[σ]

|SΩ,i| ≤ (r + 2c)h ≤ δ

2
√
d
.

Thus, by Lemma 2.3, there exists a graph-bounded set γ∗ with scaling factor√
d|γ| ≤

√
d(r + 2c)h such that σ ⊂ γ ⊂ γ∗ ⊂ Ω. Lemma 2.2 guarantees

|f − π|Wm
p (γ∗) 4 hn−m|f |Wn

p (γ∗), m ≤ n, (15)

for any function f ∈ W n
p (γ

∗) and a suitable π ∈ P
n. Note that the size of γ∗

is bounded by
|γ∗| ≤ (d+ 1)|γ| ≤ 2d(r + 2c)h 4 h, (16)

Theorem 4.3 Let σ be any local subset of Ω and γ∗ the corresponding graph-
bounded set as defined above. Then

|∆|Wm
p (σ) 4 hn−m

(
|f |Wn

p (γ∗) + h−n max
i∈IΩ[σ]

∆i,p

)
, m ≤ n, (17)

for any function f ∈ W n
p (γ

∗).

Proof: Let π ∈ P
n be the polynomial approximating f on γ∗ according to

Lemma 2.2, and set ε := f − π. Reproduction of polynomials according to
(10) leads to the representation

∆ = ε−
∑

i∈IΩ

(λiε)BΩ,i +
∑

i∈IΩ

(λi∆i)BΩ,i

of the error. Hence, for m ≤ n and p < ∞, the Bernstein inequality (7),
applied to

∑
i∈IΩ[σ]

(λiε)BΩ,i and
∑

i∈IΩ[σ]
(λi∆i)BΩ,i, yields

|∆|Wm
p (σ) 4 |ε|Wm

p (σ) + hd/p−m
(( ∑

i∈IΩ[σ]

|λiε|p
)1/p

+
( ∑

i∈IΩ[σ]

|λi∆i|p
)1/p)

.

The number of indices in IΩ[σ] is bounded by #IΩ[σ] ≤ (r̺+n)d 4 1. Hence,
by equivalence of norms on R

#IΩ[σ], we obtain the estimate

|∆|Wm
p (σ) 4 |ε|Wm

p (σ) + hd/p−m
(
max
i∈IΩ[σ]

|λiε|+ max
i∈IΩ[σ]

|λi∆i|
)
,

15



which is also valid for p = ∞. We obtain using (11)

|∆|Wm
p (σ) 4 |ε|Wm

p (σ) + h−m
(
max
i∈IΩ[σ]

‖ε‖Lp(Γ′
i)
+ max

i∈IΩ[σ]
‖∆i‖Lp(Γ′

i)

)
.

Since Γ′
i ⊂ γ∗ for all i ∈ IΩ[σ], the desired estimate follows from (15). The

case p = ∞ can be proven in a similar way. 2

We are now ready to prove our estimate for the global error.

Proof of Theorem 4.2: We only consider the case p <∞ as it is slightly
more difficult than p = ∞. We use the restricted grid cells as local subsets,
σk := ΓΩ,k ∈ W̃T , and write

|∆|pWm
p (Ω) =

∑

k

|∆|pWm
p (σk)

.

By Theorem 4.3 and the equivalence of norms,

|∆|pWm
p (Ω) 4 h(n−m)p

(∑

k

|f |pWm
p (γ∗

k
) + h−np

∑

k

max
i∈IΩ[σk]

∆p
i,p

)
.

Since ΓΩ,k ⊂ γ∗k and |γ∗k| ≤ 2d(r + 2c)h, see (16), the number of sets γ∗k
containing any given point x ∈ Ω is bounded by some constant. Equally,
the number of times every term ∆p

i,p, i ∈ IΩ, appears in the second sum is
bounded by another constant. Hence,

|∆|pWm
p (Ω) 4 h(n−m)p

(
|f |pWn

p (Ω) + h−np
∑

i∈IΩ

∆p
i,p

)
,

and the claim follows by the equivalence of norms, again. 2

Remark 4.4 As mentioned before, the dual functionals λi in the definition
of the two-stage method P could be replaced by other families of functionals,
and in particular by the de Boor-Fix functionals λ∗i . These functionals can
be applied if Pif is sufficiently smooth. Using similar arguments as above,
one can show the error bounds

|∆|Wm
∞(Ω) 4 hn−m

(
|f |Wn

∞(Ω) +max
i∈IΩ

∑

‖α‖∞<n

h−n+|α|
∣∣∆(α)

i (τi)
∣∣
)
,

if f ∈ W n
∞(Ω), and

|∆|Wm
∞(σ) 4 hn−m

(
|f |Wn

∞(γ∗) + max
i∈IΩ[σ]

∑

‖α‖∞<n

h−n+|α|
∣∣∆(α)

i (τi)
∣∣
)
,
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if f ∈ W n
∞(γ∗), analogous to (13) and (17), respectively. Recall that τi are

arbitrarily chosen points in the interiors of sΩ,i. This freedom can be used
to obtain particularly local error bounds. For example, assume that x ∈ Ω
lies in an inner grid cell ΓΩ,k, and σx ⊂ ΓΩ,k is any open cube centered at x.
Then we may choose γ∗x := σx as enclosing graph-bounded set. Further, it is
possible to choose τi = x, i ∈ IΩ[σx], to obtain

|∆(m)(x)| 4 hn−m
(
|f |Wn

∞(σx) + max
i∈IΩ[σx]

∑

‖α‖∞<n

h−n+|α|
∣∣∆(α)

i (x)
∣∣
)
.

Now, we consider two-stage methods with additional properties. Recall-
ing the bound (14) on the grid width h, we note that the local domains
ωi ∈ W∗

T used to define the local approximation operators Pi are bounded by
|ωi| ≤ rh ≤ δ/(2

√
d). The enclosing graph-bounded domains corresponding

to the ωi according to Lemma 2.3 are denoted by ω∗
i , i ∈ IΩ.

Definition 4.5 A two-stage method P is said to be of type (n, p) if

• the local approximation operators reproduce polynomials according to

Pi(π) = π

for all i ∈ IΩ and π ∈ P
n, and

• there exists νp ≥ 1 such that

‖Pi(f)− Pi(g)‖Lp(Γ′
i)
≤ νp

(
‖f − g‖Lp(ωi) + hn|f − g|Wn

p (ωi)

)

for all i ∈ IΩ and f, g ∈ W n
p (ωi).

Note that νp is just a bound on the Lipschitz constants of the operators
Pi : W

n
p (ωi) → Lp(Γ′

i) with respect to suitably weighted Sobolev norms. For
sequences of linear operators, as they are typically used in practice, νp is a
bound on the norms of the operators Pi in the appropriate function spaces.
In particular, the stronger condition

‖Pif‖Lp(Γ′
i)
≤ νp‖f‖Lp(ωi) (18)

implies (n, p)-type if Pi are linear operators.

For a two-stage method of type (n, p) the estimates of Theorems 4.2 and
4.3 simplify as follows:
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Theorem 4.6 Consider a two-stage method of type (n, p). For any local
subset σ ⊂ Ω there is a graph-bounded set σ̃ containing σ, with |σ̃| 4 h, such
that the approximation error ∆ := f − Pf σ is bounded by

|∆|Wm
p (σ) 4 νph

n−m |f |Wn
p (σ̃), m ≤ n, (19)

for any function f ∈ W n
p (σ̃). Moreover,

|∆|Wm
p (Ω) 4 νph

n−m |f |Wn
p (Ω), m ≤ n, (20)

for any function f ∈ W n
p (Ω).

Proof: For a fixed i, let π be the polynomial approximating f on ω∗
i according

to Lemma 2.3. By reproduction of polynomials,

∆i = (f − π)− (Pi(f)− Pi(π)) on Γ′
i.

Hence, with ε := f − π, the (n, p)-type and Lemma 2.3 yield

∆i,p ≤ ‖ε‖Lp(Γ′
i)
+ ‖Pi(f)− Pi(π)‖Lp(Γ′

i)

≤ ‖ε‖Lp(Γ′
i)
+ νp

(
‖ε‖Lp(ωi) + hn|ε|Wn

p (ωi)

)

≤ (1 + νp)
(
‖ε‖Lp(ωi) + hn|ε|Wn

p (ωi)

)

4 νph
n|f |Wn

p (ω∗
i )
.

Substituting this estimate into (17) leads to (19), where

σ̃ =
(
σ ∪

⋃

i∈IΩ[σ]

ωi

)∗

is obtained according to Lemma 2.3. Similarly, the global bound (20) follows
by substituting the above estimate into (13) and using the fact that the
number of sets ω∗

i , i ∈ IΩ, containing any point x ∈ Ω is bounded by a
constant. 2

5 Local least squares

In this section, we discuss approximation properties of two-stage methods
(12) based on quasi-interpolation with EB-splines BΩ for the second stage,
and least squares fits Pi(f|ωi

) with EB-splines associated with certain local
sets ωi for the first stage.

In general, local least squares fits Pi(f|ωi
) can be obtained with the help

of various approximation tools, such as polynomials or radial basis functions,

18



see e.g. [7, 5]. In this paper we study local approximations from eBn
ωi
, which

has the big computational advantage that in this case the value of the dual
functional λi(Pi(f|ωi

)) needed to form Pf coincides with the coefficient ai of
the i-th local EB-spline in the expansion Pi(f|ωi

) = aωi
Bωi

∈ eBn
ωi
. Indeed,

this follows from the fact that, since Γ′
i ⊂ ωi, the functional λi satisfies

λiBωi,k = δi,k for all k ∈ Iωi
, see Lemma 3.3. Hence, as soon as all local

approximations have been computed, the control points of the two-stage fit
Pf are obtained in no time by utilising appropriate coefficients of the local
spline approximants. Note that methods with similar advantages have been
discussed in [18, 7, 20, 17] in the context of different spline spaces.

5.1 Continuous least squares

We start with considering local approximation in the L2-sense. As before,
let ωi ∈ W∗

T , i ∈ IΩ, denote the local domains used to define the two-stage
method P , and let Γ′

i denote the corresponding inner grid cells. It is impor-
tant to note that, in general, eBn

ωi
6⊂ eBn

Ω since the local rules for attaching
outer to inner B-splines may differ from the global ones. Now, we define the
operator

P̃i : L
1(ωi) ∋ f 7→ ãωi

Bωi
∈ eBn

ωi

via the Gramian system G̃ãTωi
= F̃ , where

G̃j,k :=

∫

ωi

Bωi,jBωi,k, F̃j :=

∫

ωi

Bωi,jf, j, k ∈ Iωi
. (21)

By Lemma 3.1, |Sωi,j| < h, while |ωi| 4 h. Hence, the dimension of the
Gramian system is bounded by some constant, #Iωi

4 1. Clearly, if f ∈
L2(ωi), then P̃if is the best L2-approximation of f in eBn

ωi
,

‖f − P̃if‖L2(ωi) = inf
s∈eBn

ωi

‖f − s‖L2(ωi).

It is easy to see that the two-stage method P̃ corresponding to the local
operators P̃i, i ∈ IΩ, has all desired properties.

Theorem 5.1 For any p ∈ [1,∞], the two-stage method P̃ is of type (n, p),
and νp 4 1.

Proof: Clearly, P̃ reproduces polynomials of order n. Since P̃i is linear, it
suffices to show that

‖P̃if‖Lp(Γ′
i)
4 ‖f‖Lp(ωi), i ∈ IΩ,
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for any f ∈ Lp(ωi). That is, the constant νp depends only on the default
parameters. Let us fix i ∈ IΩ and drop the index i of ω = ωi to simplify
notation. Using (6) for p = 2, the smallest eigenvalue λ̃min of G̃ can be
estimated from below by means of the Rayleigh quotient of G̃ and Lemma 3.2,

λ̃min = min
aω 6=0

〈aωG̃, aω〉
‖aω‖22

= min
aω 6=0

‖aωBω‖2L2(ω)

‖aω‖22
< hd. (22)

As shown above, the dimension of G̃ is bounded by a constant. Hence, by
equivalence of norms, the inverse of G̃ is bounded by

‖G̃−1‖p 4 ‖G̃−1‖2 = λ̃−1
min 4 h−d.

Using Hölder’s inequality and (6), we see that the components of F̃ are
bounded by

|F̃j| ≤ ‖Bω,j‖Lp′ (ω)‖f‖Lp(ω) 4 hd/p
′‖f‖Lp(ω).

Consequently, ‖ãω‖p ≤ ‖G̃−1‖p‖F̃‖p 4 h−d/p‖f‖Lp(ω), and, using (6) again,

‖P̃if‖Lp(Γ′
i)
≤ ‖ãωBω‖Lp(ω) 4 ‖f‖Lp(ω).

2

Lemma 3.2 also yields the bound λ̃max 4 hd on the maximal eigenvalue
of G̃, implying that the condition number is bounded uniformly in h, i.e.,
cond2 G̃ = λ̃max/λ̃min 4 1 . Hence, the linear two-stage method P̃ combines
optimal error bounds with numerical stability.

5.2 Discrete least squares on scattered data

While the desired properties of continuous least squares fits depends on noth-
ing but our assumptions on the shape of Ω and upper bounds on the grid
width, the distortion, and the size of local domains, scattered data problems
require more care. For instance, as shown in the introduction, problems may
occur near the boundary and for unevenly distributed data.

Let Ξ := {ξℓ}ℓ be a finite set of data sites ξℓ ∈ Ω, and let fℓ := f(ξℓ) be
the corresponding values sampled from some function f ∈ C0(Ω). Assuming
continuity is necessary to make sure that point evaluation is well defined. A
straightforward approach to constructing local operators Pi is to compute a
discrete least squares fit of the data (ξℓ, fℓ) in SΩ,i or, more generally, in a
local domain ωi ∈ W∗

T containing the inner grid cell Γ′
i. Clearly, if no further

assumptions on the data density and distribution are made, the sets ωi have
to be carefully chosen to ensure that the data sites in Ξωi

:= Ξ ∩ ωi provide
sufficient information to compute reasonable local approximations Pif on Γ′

i.
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Assuming that Ξωi
:= Ξ ∩ ωi is a total set for eBn

ωi
, i.e., s ∈ eBn

ωi
and

s|Ξωi
= 0 implies s = 0, the local discrete least squares fit P̄i, can be defined

uniquely by
‖(f − P̄if)|Ξωi

‖2 = min
s∈eBn

ωi

‖(f − s)|Ξωi
‖2.

This defines the operator P̄i : C
0(ωi) → L∞(Γ′

i) for each i ∈ IΩ. Clearly,
the corresponding two-stage method P̄ is of type (n,∞) if the norms ‖P̄i‖,
i ∈ IΩ, of the above operators are uniformly bounded. In general, this will
not be the case.

If the scattered data Ξ are too sparse, it may be impossible to find ωi such
that Ξωi

is a total set for eBn
ωi
, and even if Ξωi

is a total set, it may happen
that the local data sites are ill-distributed such that the norms ‖P̄i‖ cannot be
bounded. To handle such data with a two-stage method, more complicated
adaptive algorithms may be applied. In particular, the methodology of [4, 7]
can be adopted, such that ‖P̄i‖ is estimated using the minimum singular
value of the collocation matrix obtained by evaluating the local EB-splines
at the data sites. We leave the development of such algorithms for future
research.

However, to begin with, we show the boundedness of ‖P̄i‖ under two
additional assumptions: sufficient density of the data and boundedness of
the number of the data sites in each spline cell. As usual, the density of a
subset X ⊂ Y ⊂ R

d is measured by the fill distance

fd(X, Y ) := max
y∈Y

min
x∈X

‖x− y‖2.

Since s|Γ′
i
is a polynomial, by Markov inequality there exists a constant β

depending only on n and d (e.g., β = 2(n− 1)2
√
d), such that

max
y∈Γ′

i

‖∇s(y)‖2 ≤
β

h
‖s‖L∞(Γ′

i)
, for all s ∈ Bn

Ω, i ∈ IΩ. (23)

Theorem 5.2 Assume that

• the data sites Ξ are sufficiently dense in Γ′
i in the sense that

fd(Ξ ∩ Γ′
i,Γ

′
i) ≤ h/(2β), i ∈ IΩ, (24)

and

• the maximum number of data sites in each spline cell is bounded by a
constant κ,

max
k∈Zd

#(Ξ ∩ Γk) ≤ κ. (25)
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Then P̄ is a two-stage method of type (n,∞) with ν∞ 4
√
κ.

Proof: As soon as the data are sufficiently dense to ensure that Ξωi
is a total

set for eBn
ωi
, ‖P̄i‖ can be estimated as ρi ≤ ‖P̄i‖ ≤

√
#Ξωi

ρi, where

ρi := max
{
‖s‖L∞(Γ′

i)
: s ∈ eBn

ωi
, ‖s|Ξωi

‖∞ ≤ 1
}
.

see [4, Proof of Theorem 2.1]. It is easy to see that Ξωi
is a total set if and

only if ρi <∞. Since |ωi| ≤ rh, the number of cells Γk satisfying Ξωi
∩Γk 6= ∅

is bounded by a constant. Hence, by (25), we have #Ξωi
4 κ, which implies

‖P̄i‖ 4
√
κ ρi.

To find a bound for ρi, we apply the techniques introduced in [16], see also
[24, Proof of Theorem 3.8]. For s ∈ eBn

ωi
, with ‖s|Ξωi

‖∞ ≤ 1, let x ∈ Γ′
i be a

point with the property |s(x)| = ‖s‖L∞(Γ′
i)
. It follows from (24) that there is

a data point ξ ∈ Ξ ∩ Γ′
i ⊂ Ξωi

such that ‖x − ξ‖2 ≤ h/(2β). Hence, using
(23) we obtain

|s(x)− s(ξ)| ≤ max
y∈[x,ξ]

‖∇s(y)‖2‖x− ξ‖2 ≤
1

2
‖s‖L∞(Γ′

i)
.

Thus,

1 ≥ |s(ξ)| ≥ |s(x)| − |s(x)− s(ξ)| ≥ ‖s‖L∞(Γ′
i)
− 1

2
‖s‖L∞(Γ′

i)
=

1

2
‖s‖L∞(Γ′

i)
,

and so ‖s‖L∞(Γ′
i)
≤ 2, which shows that ρi ≤ 2. 2

It is easy to see that conditions (24) and (25) are compatible. For exam-
ple, (24) is satisfied if Ξ is a uniform grid with side length h/(β

√
d). In this

case (25) holds true with κ = (β
√
d)d. Note that the numerical values for

κ resulting from these estimates, e.g. 1296 for the above grid in case d = 2,
n = 4, have little practical importance as they are very pessimistic. Indeed,
our numerical results below show that the method described in this section
(with d = 2, n = 4, r = 14) performs very well for random data with just
four data points per cell on average.

Condition (25) may seem counterintuitive because it suggests that in
some circumstances the availability of additional data may be harmful. In
fact, a close inspection of the error bounds for global discrete least squares
from spline spaces with stable bases given in [10, 11] reveals that they also
depend on the maximum number κ of data sites in the spline cells. A similar
phenomenon has been discussed in [19] for the moving least squares approx-
imations. The following example shows that this is a genuine phenomenon
and in general, the approximation error, and hence the norm of the discrete
least squares operator, can indeed become arbitrarily large as the number of
data sites is growing.
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Example 5.3 Consider the bivariate grid with cells (−h
2
, h
2
)2 + hZ2. Then

Γ = (−h
2
, h
2
)2 ⊂ ω ⊂ R

2 is a grid cell for the space B2
ω and f(x, y) :=

1 − x2 − y2. Choose a constant k ≥ 2 and consider the set of data sites
Ξ = Ξ1 ∪ Ξ2, where Ξ1 := h

4
Z

2 ∩ ω, and Ξ2 is a finite subset of the circle
segment

σ :=
{
(x, y) ∈ [−h

2
, h
2
]2 : f(x, y) = s(x, y) := khx+ 1− h2/4

}

(see Figure 2(a)), defined as follows. Set r := ‖f|Ξ1
− s|Ξ1

‖2, and choose a

positive integer N such that δ := r/
√
N < h2/72. Then Ξ2 := {ξi = (xi, yi) :

i = −3N, . . . , 3N}, where yi = ih
6N

and xi is uniquely determined from the
condition ξi ∈ σ. Let s∗ ∈ B2

ω be the discrete least squares approximation to
f with respect to the data sites in Ξ. We claim that

‖f − s∗‖L∞(Γ) >
kh2

24
. (26)

As k can be chosen arbitrarily large, the approximation error is not O(h2).

Proof of (26): In view of s|σ = f|σ, we have ‖f|Ξ − s|Ξ‖2 = r. Since s belongs
to B2

ω, this implies ‖f|Ξ − s∗|Ξ‖2 ≤ r. It follows that there exists i1 with

2N ≤ i1 ≤ 3N , such that |f(ξi1) − s∗(ξi1)| < δ and |f(ξ−i1) − s∗(ξ−i1)| < δ.
By a simple calculation we have |f(ξi1)| = |f(ξ−i1)| ≤ f(ξ2N) < 1 − h2/9.
Hence max{s∗(ξi1), s∗(ξ−i1)} ≤ 1 − h2/9 + δ ≤ 1 − 7h2/72. Since s∗|Γ is

linear along the line x = xi1 = x−i1 , it follows that s
∗(xi1 , 0) ≤ 1 − 7h2/72.

Similarly, there exists i2 with 0 ≤ i2 ≤ N , such that |f(ξi2)−s∗(ξi2)| < δ and
|f(ξ−i2)− s∗(ξ−i2)| < δ, and as in the above it is easy to see that s∗(xi2 , 0) ≥
min{s∗(ξi2), s∗(ξ−i2)} > 1 − h2/16. Since s∗|Γ is linear along the line y = 0,

and |xi1 − xi2 | ≤ h/(4k), we conclude that the slope of this linear function
is at least kh/12. Therefore, s∗(h

2
, 0) − s∗(xi2 , 0) ≥ (2k − 1)h2/48, and we

deduce that s∗(h
2
, 0)− f(h

2
, 0) = [s∗(h

2
, 0)− s∗(xi2 , 0)] + s∗(xi2 , 0)− f(h

2
, 0) ≥

(2k − 1)h2/48 + (1− h2/16)− (1− h2/4) > kh2/24, and (26) follows. 2

The bad errors are clearly caused by the fact that too many data sites
are lying on the intersection curve of f with its poor approximation s ∈ B2

ω.
Clearly, (26) remains valid if B2

ω is replaced by eBn
ω. Note that the density

assumption (24) is satisfied in the above example as fd(Ξ ∩ Γ) = h/(2β),
with β = 2

√
2 in (23) for n = 2. Moreover, it is not difficult to see that

k <
√
κ if ω is a local domain, which shows that the estimate ν∞ 4

√
κ

in Theorem 5.2 cannot be improved. The example also applies to the global
least squares (ω = Ω), in which case however κ < k2/h4. The estimate
‖f−s∗‖L∞(Γ) <

√
κh2 is obtained for the global least squares if the example is
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modified as follows: Replace f by the expansion of f|Γ as a linear combination
of 9 biquadratic B-splines whose supports contain Γ, and, similarly, replace
s by the spline in B2

Ω that interpolates s at the corners of Γ and vanishes at
all other knots.

Precaution needs to be taken to avoid the effects demonstrated by this
example. A simple remedy is to perform data thinning by removing “extra-
neous” data points while maintaining their sufficient density to guarantee the
same approximation order of the method P̄ . For example, assume for sim-
plicity that Ω is a d-dimensional cube and replace (24) by a stronger bound
on the fill distance, fd(Ξ∩Γ′

i,Γ
′
i) < h/(2β

√
d), i ∈ IΩ. If we now choose in Ω

a uniform d-dimensional grid with side length ε ≤ h/(2β
√
d), then every cell

of this grid will contain at least one data point. By selecting a single point in
each cell, and discarding all points of Ξ that have not been selected for any
cell, we arrive at the thinned data Ξ′ satisfying (24). Moreover, the number
of points of Ξ′ lying in a single spline cell Γk is bounded by (h/ε)d, which
shows that (25) is satisfied for Ξ′ with κ close to (2β

√
d)d. Alternatively,

thinning may be performed in the local approximation stage (i.e. effectively
built into the local operators P̄i) as described e.g. in [7].

If certain subregions of Ω are populated by significantly denser data,
and higher approximation quality is required there, then hierarchical spline
techniques [9] are more appropriate than data thinning. However, an analysis
of hierarchical spline methods is beyond the scope of this paper.

5.3 Weighted discrete least squares

In this section, we develop an alternative framework based on a suitably
weighted discrete least squares fit. It leads to a two-stage method P̂ of
type (n, p) for any p > d/n with uniform bound νp 4 1, independent of the
number or distribution of data sites provided that the data are sufficiently
dense. Since p > d/n, Sobolev embedding theorem guarantees that every
f ∈ W n

p (Ω) can be changed on a set of measure zero to become a continuous
function. Therefore the point evaluation is well defined for any f ∈ W n

p (Ω).
We first group data as follows: given an integer µ ≥ 2, we define the

sequences U ι by piecewise uniform refinement of the knot sequences T ι,

uιµℓ+m := tιℓ + lιℓ
m

µ
, ℓ ∈ Z, m = 0, . . . , µ− 1, ι = 1, . . . , d.

The corresponding subcells are denoted by

γk := [u1k1 , u
1
k1+1)× · · · × [udkd , u

d
kd+1), k ∈ Z

d.
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In this way, always µd subcells of equal size form a disjoint union of the
grid cells. For all k ∈ Z

d, the side lengths of γk are bounded from above by
hµ := h/µ, and from below by hµ/̺.

To compute a local approximation P̂if , we select a subset Ξi ⊂ Ξ of data
sites such that

|Ξi| ≤ (r − 2/µ)h and Γ′
i ⊂ ω̂i :=

⋃

ξ∈Ξi

γξ, (27)

where γξ denotes the subcell containing the point ξ. This is possible if the
data are sufficiently dense in the sense that every subcell in the inner grid
cell Γ′

i contains at least one data site. This is guaranteed, for example, when
fd(Ξ∩Γ′

i,Γ
′
i) < hµ/̺. We remark that ω̂i is not required to be a subset of Ω.

However, ωi := ω̂i ∩ Ω is a local domain since |ωi| ≤ |ω̂i| ≤ |Ξi|+ 2hµ ≤ hr.
Suitable local approximation schemes can be obtained by solving weighted

discrete least squares problems. For a fixed i ∈ IΩ, we define the weight d(ξ)
as the quotient of the volume of γξ and the number of data sites in γξ,

d(ξ) :=
vol(γξ)

#{Ξi ∩ γξ}
.

Abbreviating ω := ωi and ω̂ := ω̂i, we define the operator

P̂i : C
0(ω) ∋ f 7→ âω̂Bω̂ ∈ eBn

ω̂

via the normal equation Ĝâω̂ = F̂ , where

Ĝj,k :=
∑

ξ∈Ξi

Bω̂,j(ξ)Bω̂,k(ξ)d(ξ), F̂j :=
∑

ξ∈Ξi

Bω̂,j(ξ)f(ξ)d(ξ), j, k ∈ Iω̂.

That is, the spline âω̂Bω̂ is minimizing the weighted error

∑

ξ∈Ξi

(
âω̂Bω̂(ξ)− f(ξ)

)2
d(ξ) → min

at the data sites in Ξi. Of course, in applications, âω̂ can be determined
numerically by more suitable methods, such as QR-factorisation, rather than
resorting to the normal equation.

The case p = ∞ is considered first.

Theorem 5.4 For sufficiently large µ, let condition (27) be satisfied for all
i ∈ IΩ. Then the local operators P̂i, i ∈ IΩ, are well defined, and the corre-
sponding two-stage method P̂ is of type (n,∞) with ν∞ 4 1.
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Proof: Clearly, P̂ reproduces polynomials of order n as soon as the matrix
Ĝ is nonsingular, which will be shown below under the assumption that µ is
sufficiently large. Since P̂i is linear, it suffices to show that

‖P̂if‖L∞(Γ′
i)
4 ‖f‖L∞(ω), f ∈ C0(ω),

for all i ∈ IΩ, where we drop the index i of ωi, again.
Let G̃ be the Gramian matrix of continuous least squares, as defined in

(21), for the set ω̂. We have Γ′
i ⊂ ω̂ and |ω̂| ≤ rh. Hence, following the

arguments used in the proof of Theorem 5.1, we conclude that the smallest
eigenvalue of G̃ is bounded from below by λ̃min < hd.

Next, we show that Ĝ, as a small perturbation of G̃, inherits this property
of the smallest eigenvalue. For a suitable set L ⊂ Z

d of indices, the local
domain ω̂ can be written as the disjoint union ω̂ =

⋃
ℓ∈L γℓ of subcells.

Abbreviating b := Bω̂,iBω̂,k and Ξi,ℓ := Ξi ∩ γℓ, we have

G̃i,k − Ĝi,k =
∑

ℓ∈L

(∫

γℓ

b−
∑

ξ∈Ξi,ℓ

b(ξ)d(ξ)
)
.

For a fixed ℓ, all points in the inner sum have the same weight d(ξ) =
vol(γξ)/#{Ξi ∩ γξ}. Since b is continuous on the connected set γℓ, the inter-
mediate value theorem implies existence of a point ηℓ ∈ γℓ with

b(ηℓ) =
1

#{Ξi ∩ γξ}
∑

ξ∈Ξi,ℓ

b(ξ).

Hence, by the mean value theorem,

∣∣∣
∫

γℓ

b−
∑

ξ∈Ξi,ℓ

b(ξ)d(ξ)
∣∣∣ =

∣∣∣
∫

γℓ

(
b− b(ηℓ)

)∣∣∣ ≤ hµ|b|W 1
∞(γℓ)

∫

γℓ

1.

By (7), the gradient of b is bounded by |b|W 1
∞(γℓ) 4 h−1 so that

|G̃i,k − Ĝi,k| 4
hµ
h

∑

ℓ∈L

∫

γℓ

1 =
vol(ω̂)

µ
4
hd

µ
.

#Iω̂ is bounded by a constant, implying that ‖G̃− Ĝ‖2 4 hd/µ. Since G̃, Ĝ
are symmetric, the smallest eigenvalue λ̂min of Ĝ satisfies

|λ̂min − λ̃min| ≤ ‖G̃− Ĝ‖2 4 hd/µ,

which together with λ̃min < hd implies

λ̂min ≥ λ̃min/2 < hd,
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provided that µ is large enough.
In particular, Ĝ is invertible, saying that P̂i is well defined. Further,

‖Ĝ−1‖∞ 4 h−d follows as in the proof of Theorem 5.1. The components of
F̂ are bounded by

|F̂j| ≤
∑

ℓ∈L

∑

ξ∈Ξi,ℓ

|Bj(ξ)| |f(ξ)|d(ξ) 4 ‖f‖L∞(ω)

∑

ℓ∈L

vol(γℓ) ≤ hd‖f‖L∞(ω).

Hence, ‖âω̂‖∞ ≤ ‖Ĝ−1‖∞‖F̂‖∞ 4 ‖f‖L∞(ω), and by (6),

‖P̂if‖L∞(Γ′
i)
≤ ‖âω̂Bω̂‖L∞(ω̂) 4 ‖âω̂‖∞ 4 ‖f‖L∞(ω),

as requested. 2

Results for the case d/n < p < ∞ can be derived if the sets Ξi of data
sites used for the local approximation are chosen such that |Ξi| ≤ (r−2/µ)h,
as before, but now

Γ′
i ⊂ ωi :=

⋃

ξ∈Ξi

γξ ⊂ Ω. (28)

That is, data sites whose neighborhood γξ is not contained in the domain Ω
are discarded.

Theorem 5.5 Let p > d/n. For sufficiently large µ, let condition (28) be
satisfied for all i ∈ IΩ. Then the local operators P̂i, i ∈ IΩ, are well defined,
and the corresponding two-stage method P̂ is of type (n, p) with νp 4 1.

Proof: The properties of Ĝ derived in the preceding proof are valid also here.
In particular, by the equivalence of norms, ‖Ĝ−1‖p 4 h−d for µ sufficiently

large. The components of F̂ are bounded by

|F̂j| ≤
∑

ℓ∈L

∑

ξ∈Ξi,ℓ

|Bj(ξ)| |f(ξ)|d(ξ) 4
∑

ℓ∈L

vol(γℓ)‖f‖L∞(γℓ) ≤ hdµ
∑

ℓ∈L

‖f‖L∞(γℓ).

The side lengths of the subcells γℓ lie between hµ/̺ and hµ. Hence, transfer-
ring the Sobolev inequality

‖f‖L∞(u) 4 ‖f‖Lp(u) + |f |Wn
p (u), u := [0, 1]d,

from the unit cube u to γℓ by scaling, we see that

‖f‖L∞(γℓ) 4 h−d/p
µ

(
‖f‖Lp(γℓ) + hnµ|f |Wn

p (γℓ)

)
.
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The number #L of subcells γℓ forming ω is bounded by #L 4 µd. Hence,
by Hölder’s inequality, the 1-norm and the p-norm in R

#L are related by
‖ · ‖1 4 µd/p′‖ · ‖p, and we conclude

|F̂j| 4 hd/p
′

µ µd/p′
((∑

ℓ∈L

‖f‖pLp(γℓ)

)1/p

+ hnµ

(∑

ℓ∈L

|f |pWn
p (γℓ)

)1/p
)

≤ hd/p
′(‖f‖Lp(ω) + hn|f |Wn

p (ω)

)
.

Hence, ‖âω‖p ≤ ‖Ĝ−1‖p‖F̂‖p 4 h−d/p
(
‖f‖Lp(ω)+h

n|f |Wn
p (ω)

)
. Finally, by (6),

‖P̂if‖Lp(Γ′
i)
≤ ‖âωBω‖Lp(ω) 4 ‖f‖Lp(ω) + hn|f |Wn

p (ω),

and the proof is complete. 2

Note that the inequality ‖P̂if‖Lp(Γ′
i)
4 ‖f‖Lp(ω) does not hold in general,

and so we genuinely need here the second part of Definition 4.5 rather than
the stronger condition (18) used in Theorems 5.1, 5.2 and 5.4.

6 Numerical Results

The focus of this work is on analytical issues, but we want to complement
our results by a brief numerical study of a scattered data problem. It is
neither comprehensive nor inspired by a real application, but just intended
to support our theoretical findings and, in particular, to illustrate the superior
performance of extended B-splines over the standard form.

The domain Ω is a sector with angle 4π/3 and radius 4, centered at the
origin, see Fig. 3(a). Knot grids T = [T 1, T 2] are equidistant with T 1 =
T 2 = h(Z+ 1/2) and h ranging between 1 and 1/64. Given h, the data sites
Ξ are obtained as follows: First, a randomized set of points is chosen such
that, on average, every grid cell contains four points. Second, so far empty
subcells are filled with additional random points to make sure that every
subcell contains at least one data point. The data values are sampled from
the function f(x, y) = sin x · sin y. We compare three variants on bicubic
spline approximation, i.e., n = 4:

• Standard: A global discrete least squares fit is computed for standard
tensor product B-splines.

• Extended: A global discrete least squares fit is computed for extended
tensor product B-splines.
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(a) Domain, grid, and data sites for h = .5
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(b) Error for two-stage approximation

Figure 3: Model problem for scattered data approximation.

• Two-stage: A two-stage approximation is computed based on a local
weighted discrete least squares fit with extended tensor product B-
splines. The parameter µ, as introduced in Section 5.3, is set to µ = 2,
and the local domains ωi according to Definition 4.1 are

ωi := Ω ∩ [t1i1−6, t
1
i1+8]× · · · × [tdid−6, t

d
id+8], i ∈ IΩ.

Fig. 3(b) shows the error of the two-stage approximation with bicubic
EB-splines. Thanks to the stability of the basis, the errors in the interior
and near the boundary are of comparable size.

Fig. 4 and Table 1 present numerical results, where the maximum, re-
spectively, mean errors are estimated by evaluation on a fine 800× 800 grid.
The partially large errors of standard B-spline approximation indicate the
corruptive effect of straying coefficients of outer B-splines. By contrast, both
local and global approximation with extended B-splines show the predicted
behavior with the optimal order O(h4) of convergence. We note that the re-
sults of local and global approximation are so close that they can be hardly
distinguished in the plot.
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