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Scattered Data Problem

Q C R? a bounded domain (d > 1)
=={&MM, c Q  arbitrarily distributed points in
{z}M, CR known values of f: Q2 — R

Find: s : 2 — R, an approximation of f




Two-Stage Scattered Data Fitting

Known from the 1970th (Schumaker; Barnhill; Lawson; Foley )

Stage 1

(@) Cover 2 with overlapping subdomains  w,,, u € M.

(b) Compute local approximations p, tothedata (&;,z;), & €ZE, C ENwy,.



Stage 2

s : £ — R using the information provided by the

Create a smooth global function
local approximations p,,, u € M.




Advantages

Motivation

e Efficiency: Linear computational complexity if #=, = O(1) and #M = O(N)

e “Local approximability”: Distant data samples do not contain essential new
iInformation needed for local approximation if the smoothness of the underlying
function is not too high (a function in a Sobolev space, say).

Features achievable with some effort

e Approximation quality:  Resulting approximation error (after Stage 2) should be
comparable with the approximation error of local approximations.

e Convenient structure of the surface: E.g. NURBS or Bézier surfaces well
known in CAGD; adaptive meshes; multilevel compression algorithms (spline
wavelets, hierarchical bases)

o Artefact-free surface: C', C? or even higher smoothness surfaces without
artificial discontinuities or ridges. Local polynomial exactness. No spurious
oscillations.



Complexity

A two-stage algorithm must take care of

e choice of subdomains w,, (usually controlled by the parameters of the method
used in the second stage, such as density and shape of spline mesh)

e choice of appropriate local data sites =,

e reliability of local approximations

Ideally, all this should be done adaptively, depending on particular data.

Instead, traditional two-stage algorithms choose data sites and spline mesh
heuristically and ignore the question of the error of the local approximations

Typical approach to local approximations: to estimate the value of the unknown
function at a point, take, say, the 15 closest data sites, and build least squares
cubic polynomial approximation using this data.

This is problematic: no error bound if the local data sites are poorly located (near to
a zero set of a cubic polynomial)
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Local methods (Stage 1)

e Least squares polynomials
¢ Interpolation with positive definite functions (radial basis functions, kriging)

e Weighted averages (Shepard’s interpolation, etc.)



Global methods (Stage 2)

o Spline quasi-interpolation: s = Y " Au(pu) By
peM
B,, — locally supported basis splines
(local polynomial exactness; NURBS; Bézier surfaces; adaptive meshes)

e Partition of unity method: ~ s= » " p,Q,, where Q,>0, > Q,=1
pneM peM
(preserves exact interpolation if the local method interpolates exactly)

e Subdivision surfaces: Computer Graphics applications

e Gridding: no parametric surface, just evaluations on a fixed uniform grid
(image processing; FFT; wavelets)



TSFIT (Two-Stage FITting)

Authors: D. & Zeilfelder

C library of functions

Available under GNU General Public License

Homepage http://www.maths.strath.ac.uk/~aas04108/tsfit/
LAPACK and BLAS required

Tested on LINUX machines (x86 and x86_64)

Test data sets available with the package



Features

e Goal: Combine any local method with any global method

e Comparison of various two-stage methods
e Object-oriented style programming with standard C
e Extendibility

e Convincing performance on examples of large, difficult, truly scattered and noisy
real world data (contour data, multibeam echosounder data)



Design

Global method
locale; [ - Local method
locales | = Converter locale
localey

Example locale for a global method: 1) point in the domain, and 2) function and
derivative values at this point.

Example locale for a local method: 1) triangle to define the Bernstein-Bezier basis,
and 2) coefficients of a polynomial w.r.t. this basis.



Methods Already Implemented

Version 0.91 (November 2005): 2D only

(a) First Stage (“local methods”):

— Least squares polynomials with degree adapted to the local constellation of
data sites by estimating the norm of the least squares operator using the
singular value decomposition of the local collocation matrices. [D. & Zeilfelder]

— Hybrid method: Polynomials + radial basis functions (RBF). Local RBF knots
are selected by a greedy procedure, the norm of the least squares operator is
again controlled with the help of the singular value decomposition.

[D., Morandi & Sestini]

— RBF interpolation or least squares: Constants + radial basis functions. Knots
are selected by thinning to achieve good separation. [D., Sestini & Morandi]

(b) Second Stage (“global methods™):

— C'! cubic and C? sextic “direct extension” splines on the four-directional mesh.
[D. & Zeilfelder]



Second Stage: Direct Extension Splines
(D. & Zeilfelder ;  Applications to computer graphics: Haber et al, IEEE Vis 2001)
C'! cubic or C? sextic splines on the four-directional mesh

Extension algorithm
a for the C! case:




Choice of Local Domain and Points

Parameters: tolerances M in, Mmax

For each cell 7}, of a spline partition,
find w D> T, s.t.for £, =ENw itholds: #Z, > Muin

(to achieve this, we extend w by scaling step by step).

Thinning of =, , If #=2, > Mpyax .



Local Approximation

“Local” Problem:
= local points &; in w,
flg, corresponding z;-values of f : Q@ — R
P,  local approximation space

Find: p, € P, with small local error || f — p,|lc(w,)

= C Wy

Fundamental differences to the “global” problem:
e The set =, Iis small, i.e. #Z,, Is bounded by a constant

e diam(w,) — 0
e Any smooth function is “polynomial-like” locally



Details on Local Polynomial Approximation

P, =11, the space of polynomials of total degree < ¢

Let p, = L=(f) be local least squares polynomial:
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Approximation error:
w < 1 = ) inf W)
|f puHC( ) ( + || L=]| plelequ PHC( )

w=wy, Lzl = [[Lellcw) —cw):

L= is a well-defined bounded operator if the least squares problem is non-
degenerate. (It is exact for polynomials of degree q.)

F—

We need to make sure that ||L=|| does not blow up forany =



Computable estimate of || Lz||

Let P,..., P, span the space P, on w. Consider the local collocation matrix
C = [P(&)]is-
We have
K10,,,,(C) <||Lz| < Koy/#E 0,,;,,(C), (+)

where 0,,;,(C) is the minimal singular value of C', and

| > =143 Pillow) _

K, s < I
(27 layl2)

(If the basis { P, ..., P, } is properly scaled, then K, K5 > 0 are independent of w.)

We accept a local approximation only if o} (C) < &,

where « is a user specified tolerance.




Proof of ()

Let .
LE(f) — Zaij.
j=1
It follows by a well-known result in numerical linear algebra that the vector a =
(a1,...,a,)" can be computed as the product of the pseudoinverse C* of C' with

the vector f|=. Therefore,

lallz = IC* flzllz < ICT (2l flzllz = 0 (O fI=]l2-

Since
| L=(f)llcw) < Kallall2

Iflzllz < V#Eflzllo < VH#Efllow),

the upper bound in (x) follows:

and

HL ( )HC(W) < K2||a’H2 < KQO_mzn( )Hf‘EHQ S K2 #‘—‘ Omzn( )Hf”C(w)



To prove the lower bound, we choose a function f € C(w) such that

IC* flzlle = 1CF 2l flzlle,  [1flzlle = [0,
which is obviously possible. Then we have

|Lzfllcw) > Kil|lCT flzllz = Ki0,,1,(O)]| flz]|2-

Since ||flzll2 > [Iflzllo = IIfllcw), We arrive at the inequality

IL=fllcw) = K10, (O) fllow)

which completes the proof.



Recalll: Example of 30 points in [—1, 1]?
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Error of least squares polynomial for f(x,y) = x + 3sin(xy)
—2.6 < f(z,y) < 2.6, (z,y) € [-0.8,0.8)

degree | erroron [-0.8,0.8]2 | o (C)
1 2.54 (48%) 0.49
2 0.23 (4.4%) 2.04
3 6.20 (120%) 83.3
5 12.6 (240%) 2127

Degree 1. poor approximation (o (') =~ 0.5 reasonable, but degree too low)

mzn(

Degree 2: the best choice (o, (C) ~ 2 reasonable; quadratics approximate
better than linear polynomials)

Degree 3: useless (120% error); cubics can approximate f better than quadratics,
but o~ (C') =~ 83 magnifies the error

mzn(

Degree 5: useless; the high o1 (C) magnifies the error and compensates the
positive effect of a higher order approximation

No numerical instability: e.g. cond(C) ~ 523 for cubics
cond(C') ~ 17000 for degree 5



If o1 (C) istoo large , there are two possibilities:

min

1. Extend =:

2. Use aless demanding P

Reduction of the polynomial degree gq:

(bad for ¢ = 2, good for ¢ = 1)

Both 1. and 2. worsen the best approximation iné 1f = pllew
pellq



Algorithm
Parameters: Polynomial degree ¢ and tolerance «.
Given: Local points =,, and an appropriately scaled polynomial basis

Find: Approximation of f onacell T, ofa spline partition.

1. If g =0, compute Lz(f). STOP

2. Compute the singular value decomposition of the local collocation matrix C.
If omin(C)” " <k, compute Lz(f). STOP
Otherwise, setg = ¢ — 1 and go to 1.



Local Approximation with Radial Basis
Functions

D., Morandi & Sestini : two algorithms tested recently

1. “Hybrid” polynomial/RBF local least squares approximation H( f), where

- —0
Hw:Hq+span{q§(H—”2) ; 96@}, O CZz,
¢ 1s aradial basis function, p.d. or c.p.d. of minimal order < ¢ + 1

d,, — diameter of w, ¢ — scaling parameter.



Approximation error:

—H w<(1 L:H)'f — Hll o,
17~ HDllew < (14 1E20) jnf I ~ Hle

where || LY || is the norm of the least squares operator for the hybrid space.

Similar to the pure polynomial case, ||L£|| can be estimated by minimum singular
value of the corresponding collocation matrix.

Conversion to a polynomial needed by the “extension” spline:
Interpolation or least squares w.r.t. the evaluations of H(f) on a local grid.



Algorithm: Hybrid Method

Parameters: Polynomial degree ¢, RBF ¢, scaling coefficient ¢,
and tolerances kp, Kg.

Given: Local points =,, and an appropriately scaled polynomial basis

1. If #=, <dimII, + 3, use the polynomial method. STOP

2. Initialize the knot set Y,, C =, with 3 Points in good location, and compute the
singular value decomposition of the hybrid collocation matrix C'.

3. If amin((})_l > kg, use the polynomial method. STOP

4. Compute the hybrid approximation H,(f) with knots Y, .
STOPR, if dimIl, + #Y, = #Z,, .

5. Let £ beapointin =\ Y, ofthe highesterror |f(&) — H,.(f,€)| -
Set Y, =Y,U{¢{}, and compute the singular value decomposition of the hybrid

collocation matrix C. STOP, if amm((J)_1 > ky. Otherwise, go to 4.



2. Standard RBF approximation

- —0
p+Zaq§( ”2) pell,, O©CE,
hco

where ¢ is p.d. or c.p.d. of minimal order < g+ 1.

Interpolation:

R(f)(0) = [f(0), alfeco,

Z agp(0) = 0, all p € 11,
0cO

(Constrained) least squares:
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Approximation error of RBF interpolation

Adjusting some results from the literature
(in particular, Madych & Nelson; Schaback; Jetter, St  6ckler & Ward ),
we get

1 .
I = BDlleer < (W gy mi Jodl- 1) —] o

where

o= ([ ';f(’z() ax) " o= o(L), ()= oull )

By,5(0) — ball in R* with center at origin and radius 1/,

v(Il,,©) = min Iplzlloo

— polynomial norming constant related to || Le||
pelly ||plo(w)

| fls., 1S in general different for different local subdomains w



Approximation error in the case of thin plate splines.

Thin plate spline:

oV (r) = (—1)16/21pP, B e Ryp\ 2N,
(=1)8/2* 1P logr, 3 € 2N,

(c.p.d. oforder [3/2]if € R-p\2N, and (/2+1if 3 € 2N).

Therefore,
2 o5 = (6d)P| F121p 5. inf . _H < C,(1/9)",
v = Ga) Vs im0l 1) =, < Cal1/5)
Estimate: .
_ < 1 B/2
I = R(f)llew < Cal1 + S —g7) 422 1o

More elaborate estimates allow to replace d3/? with d°+1 (even d°*? for grid data:
Buhmann) at the expense of using a stronger norm of f.



Algorithm: RBF Method

1. Choose =, andset Y, =%, . Thin Y, ifneeded, s.t. d,, /sd(Y,) <S.
(d,,, — diameter of w,,, sd(Y,) — separation distance of Y,.)

2. Adjust the polynomial degree ¢ to the knot set Y,
(as with the polynomial method).

3. Compute either RBF interpolation R/ (f) with the knots Y, ,
or RBF least squares R/°(f) with the knots Y, and data Z,, .

Parameters: Polynomial degree ¢, RBF ¢ (p.d. or c.p.d. of order 1),
scaling coefficient 9, und tolerances M in, Mmax, kp, S.



Work in Progress / Future Work

Improved local methods (greater adaptivity in the local data selection, taking into
account the information about level and type of noise, etc.)

Additional global methods, with emphasis on splines (tensor product splines,
NURBS, box splines, Powell-Sabin splines, etc.)

Using spline wavelets and hierarchical splines for compression of surfaces
obtaned from data fitting

Adaptive irregular meshes (multivariate counterpart of univarite free knot splines;
use C! and C? polynomial splines on irregular triangulations and local refinement
algorithms from FEM)

Fitting functional data on manifolds (joint work with Larry Schumaker) and in
higher dimensions

Methods tuned for particular type of data (e.g. contour data)



Numerical Examples

1. Recovery of Franke test function from its values at 100 points.
(The data ds3 is available from http://www.math.nps.navy.mil/~rfranke/)

3 [_(9x—2)2+(9y—2)2] 3 [_(9a3+1)2 (9y+1)]

flz,y) = Jexp i + 7 exp o 10
1 9z — 7)% + (9y — 3)? 1 ) )
—|—§exp[— 1 }—gexp[—(9x—4) —(9y—7)].



Exact Approximation (H,q)

(Hmq): Hybrid method based on the multiquadric function ¢(r) = 1+ 2.
Polynomial degree: ¢ = 0. Spline space: C? sextic piecewise polynomials on the
four-directional mesh (5 x 5 square grid with both diagonals of the squares drawn
iN, Mpin = 16, M0 = 100).

We also consider methods based on other RBFs: (Hig), (Hg), (Hrp), (Hw2), etc.
Global methods from Franke’s 1979 report are denoted (Gng), (Giug), etc.

Pure polynomial method is denoted by (P).



aver

method | ¢ | Ky | 0 max mean rms ng
(Hug) | 0] 10° [ 04 (161072191072 |3.0107° | 21.1
(Hmg) [0 10 | 05| 1.5107% [ 2.0107° | 3.1107° | 21.3
(He) 0]10*[0.4[19107%|22107° | 351072 | 19.3
(Hrp) | 11]10°]20|57107%| 781072 | 131072 | 20.7
(Hrps) | 11]10° |20 |47107% 451073 | 751077 | 20.3
(Hrps) |2 ]10°{20[30107%|3.4107° | 5.5107° | 14.9
(Hrps) | 2] 10° 20281072 |341072 |52107° | 13.4
(Hw2) [0]10* 20391072 411073 |7.11073 | 22.7
(Hps) 010° |20 (331072 |3.6107°|6.0107° | 22.4
(Hws) [0]10*]20]211072 211072 |3.61073 | 21.2
(Hwg) |0 ]10° 20161072 | 191072 | 3.0107° | 20.9
(P) 6 3.8107% | 521073 | 7.6 10~°

(Guma) 231072 | 1.81073 | 3.6 103
(GivQ) 251072 | 2.81073 | 521073

(Ge) 6.2107% | 6.0107° | 1.1 1072

(Grp) |1 521072 | 5.31072 | 9.5 1073

(Grp3) | 1 251072 | 3.1107° | 5.810°

Table 1: Franke function test (ds3 data set): errors on a dense grid.




2. Approximation order tests with Franke function.

N Is the number of points

N Nye | Mpin | g ) max mean rms ng’ "
102 | 5 16 10° { 0.4 | 4601072 | 3.981073 | 7.46 1073 | 19
103 16| 40 | 102|101 1.69107% | 1.53107% | 6.4710°% | 47
10* | 50| 40 |10 |1.6|4.641077 | 5621072 | 1.5110°8 | 48

Table 2: Franke function test (random data)

. hybrid method with multiquadric.

Table 3: Maximum error using the RBF interpolation method with multiquadric.

N 6 =0.4 5 = 0.8 5 =1.2 d=1.6
S = 40 S =20 S =40/3 S =10
107 227-1072 | 2.81-1072 | 3.66-1072 | 4.48 - 1072
103 1.26-107° | 4.44-107% | 6.13-107° | 5.42-10~*
10* 420-107°% ] 1.98-10~" [ 1.00-10=" | 2.36 - 10~ "
10° 2.03-107° ] 9.28-107% | 3.54-107% | 5.60-1078
H#knots 122.2 87.2 60.4 42.8

Other parameters: M,,;, = 20 if N = 10% and M,,,;,, = 100 otherwise.




Thin plate splines with RBF interpolation method.

N spline grid || maz (8 = 3/2) | max (6 = 7/4)
102 5x5 8.55 - 102 6.92 - 102
10° | 16 x 16 5.22 - 1073 3.37-1073
10* | 50 x 50 2.60-10~* 1.17-10~4
10° | 158 x 158 2.37-107° 7.09-107°

Table 4: Maximum error using the local RBF interpolation scheme based on
o(r) = r?, 3 = 3/2 and 7/4. Parameter values: § = 1, § = 0, M,,;n, = S = 100.
Approximation order about h°+!



3. Denoising

Franke test function with normally distributed random errors on the 100x100 grid
(standard deviation o = 0.05)



Reconstruction (C spline, polynomial method) of the contaminated data

dim=304

Error w.r.t. the original function: max=0.0274, mean=0.00415, rms=0.00552
Parameters: k = 1, M,,.x=300

Noise reduction: o /rms = 9.058



Reconstruction of the Franke test function from 500 contaminated values by
[McMahon & Franke, 1992] (standard deviation ¢ = 0.05)

N= T T T
00 o
AT o ©
09F oo P& 9% 9°
® %8P o 38 o
08F o %OO o0 “° 9 g
o® g I
08 @ o0 O ]
e S o
%05 o © %o, o oo
061 o 9 o o g
] o ° o ° © 0% o & g
[} o o 5 o o @ g§® 8§
05 ce o ° oo 0®°, of
90 00 %o 00 © o © ¥
®80¢ g o5 5o 0o o
04 @ 60 ® %o dnyg OOO o o d
B So® 92 o g9 8 go° @0 o
03 o © o o &@ 000; 0@ o g 8 o
35 oo o o o o o b
Po &S 0% %% %y 6% o 8y
§ Loo °99% o ° % [
0.2 ° o o~ © O @ _ (0® oo 4
o o ‘o 8 8 9
o5 8@ @ ® © © ® e (g &
0.1@§§ O 05 00,%% 0o o < 2]
© P o o © S &
B0 20 ° %o%ébo ® o o 4
0 <o . L% .
0 01 o 03 04 05 06 O 08 09

231 degrees of freedom, rms error: 0.0178

Noise reduction: o /rms = 2.81



4. Glacier data set: 8,345 points (44 digitized height contours of a glacier with 25m
vertical spacing; also available from the homepage of Franke).

Location of data points 3D perspective view




Glacier test: The C? spline approximation (n, = 20, n,, = 24) with (Hyq).




Zoom

P (20 x 24) Hyiq (20 x 24)
Raiq (20 x 24) Hyiq (40 x 48)



5. Black Forest data

15,885 data points from an area of 144 km?
(elevation range 1200 m)




The C? spline approximation (n, = n, = 80) with (Hyq)




Zoom P (80 x 80) Hyiq (80 x 80)

Ruiq (80 x 80) Hyiq (160 x 160)




6. Rotterdam Port multibeam echosounder data 634,604 raw data points (courtesy
Quality Positioning Services, Zeist, Holland).




Zoom to the local distribution of the xy-points
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Special features of multibeam data:

e Huge data sets are produced very fast.  (Tens of millions of points per hour.)
e They should be visualised in real time.
e The measurement errors (noise, outliers) should be removed in real time.

e Compression is highly desirable.



Processing of the Rotterdam Port data

1) A coarse approximation (22,399 degrees of freedom, 23.8 s computational time,
rms error 0.61 m):

Vertically exaggerated (4 x). The z-values of the data: -27.6 m to -5.3m.



2) Despiking / data cleaning: all points (12.980) with the error > 0,61 removed:

-22

340 230 320 310 300 700



3) The final spline surface (142,027 degrees of freedom, 114.6 s computational
time, rms error < 0.08 m w.r.t. the cleaned data):




View from the above

The surface faithfully represents a fine structure on the harbour floor such as
remains from the dredge process.



Zoom (P) (HMQ)




