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Abstract. We present error bounds for the approximation from the spaces of multivariate
piecewise polynomials admitting stable local bases. In particular, the bounds apply to the spaces
of smooth finite elements in n variables. In addition, in the case of a space of bivariate quintic C1

piecewise polynomials we discuss its stable splitting into a subspace satisfying homogenious boundary
conditions and its complement. These results are used by K. Böhmer [3] in his finite element method
for general fully nonlinear elliptic differential equations of second order.

1. Introduction. Multivarite smooth piecewise polynomials have long been
studied in the finite element method, see e.g. the famous Ciarlet’s book [5]. Clearly, in
many situations low order non-conforming or even discontinuous elements are prefer-
able. However, it seems difficult to apply the approaches relying on these elements in
the case when no weak variational formulation of the differential equation is available,
for example for the fully nonlinear elliptic equations. Therefore, the first general finite
element method for these equations developed by K. Böhmer [3] is based on smooth
finite elements.

The theory of such elements, especially in two variables, has been significantly
developed in recent years for the needs of approximation, see [13]. In particular,
nested spaces of smooth finite elements and C1 hierarchical bases are available [7, 11].

However, certain important questions have not been addressed, in particular the
error bounds for multivariate smooth piecewise polynomials on general triangulations
in R

n. The first goal of this paper is to fill in this gap, see Theorem 3.1. K. Böhmer [3]
relies on this result in his proof of the error bounds for his finite element method for
fully nonlinear differential equations. Our second major goal is to provide a new
construction of a modified Argyris finite element that allows a stable splitting of the
finite element space into a subspace satisfying homogenious boundary conditions and
its complement, see Section 5. This construction is motivated by the needs of the
finite element method presented in [3].

Let T be a triangulation of a bounded polyhedral domain Ω ⊂ R
n, i.e., T is a

finite set of non-degenerate n-simplices such that
• Ω =

⋃

T∈T T ;
• the interiors of the simplices in T are pairwise disjoint; and
• each facet of a simplex T ∈ T either lies on the boundary of Ω or is a common

face of exactly two simplices in T .
Let v be a vertex of T . The star of v, denoted by star(v), is the union of all n-

simplices T ∈ T attached to v. We set star1(v) := star(v), and define starγ(v), γ ≥ 2,
recursively as the union of the stars of all vertices of T contained in starγ−1(v).

Let us denote by |T | the maximum diameter of simplices T ∈ T , and by ωT the
shape regularity constant of the triangulation T ,

ωT := max
T∈T

hT

ρT
,

where hT and ρT are the diameter of T and the diameter of its inscribed sphere,
respectively.
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For any d ≥ 0, let Sd(T ) denote the space of all piecewise polynomial functions
w.r.t. T , i.e.,

s ∈ Sd(T ) ⇐⇒ s|T ∈ Πn
d for all n-simplices T ∈ T ,

where Πn
d is the linear space of all n-variate polynomials of total degree at most d. It

is well-known that dim Πn
d =

(

n+d
n

)

.
Our goal is to provide upper bounds for the Lp approximation error from any sub-

spaces S ⊂ Sd(T ), such that the constants in the estimates depend only on n, p, d, ωT ,
and some parameters of a basis for S characterizing its stability and locality, see The-
orem 3.1 below. In the case of finite element subspaces these bounds can be found
e.g. in [4], and in the bivarite setting in [12]. Anisotropic triangulations have been
considered in [8].

Let Cr(Ω) denote the linear space of all r times continuously differentiable func-
tions on Ω. We are particularly interested in the spaces of smooth piecewise polyno-
mials (splines)

Sr
d(T ) := Sd(T ) ∩ Cr(Ω), 1 ≤ r < d,

and their subspaces. There are various constructions of stable local bases for Sr
d(T )

and/or certain subspaces thereof, see discussion in Section 4 below. The error bounds
of Theorem 3.1 apply to all spaces where such bases are available, in particular to the
full spline spaces Sr

d(T ) on arbitrary triangulations as soon as d ≥ r2n + 1.
We will use the following notation for the function spaces and norms. For any

domain G ⊂ R
n we consider the Lp-spaces with the norm

‖f‖Lp(G) =

{

(
∫

G
|f(x)|p dx)1/p, 1 ≤ p < ∞,

ess supx∈G |f(x)|, p = ∞,

as well as the Sobolev spaces W µ
p (G), µ = 1, 2, . . ., with the semi-norm

|f |W µ
p (G) =

{

(
∑

|α|=µ ‖Dαf‖p
Lp(G))

1/p, 1 ≤ p < ∞,

max|α|=µ ‖Dαf‖L∞(G), p = ∞,

where Dα denotes the usual pointwise partial derivative

Dα :=
( ∂

∂x1

)α1

· · ·
( ∂

∂xn

)αn

, |α| := α1 + · · · + αn,

whenever appropriate, and a weak derivative otherwise. Note that in case µ = 0 we
have

|f |W 0
p (G) = ‖f‖Lp(G), 1 ≤ p ≤ ∞,

and that Hµ(G) is alternative notation for the space W
µ
2 (G).

Given a triangulation T of Ω, we also consider the mesh-dependent Lp norm
defined by

‖f‖TLp(ω) =

{

(

∑

T∈T ‖f‖p
Lp(T )

)1/p

, 1 ≤ p < ∞,

maxT∈T ‖f‖L∞(T ), p = ∞.

The error bounds below are formulated for any triangulation T , with explicit
mentioning of the parameters on which the constants in an estimate depend. Clearly,
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if one generates a family of triangulations {T h} and spaces {Sh} parametrised by
some parameter h, for example h = |T |, and assumes that the other parameters,
such as n, d, p, ωT remain fixed or bounded, then one obtains respective asymptotic
estimates and rates of convergence.

In particular, the assumption that ωT h is bounded is equivalent to saying that
the family {T h} is non-degenerate, see [3].

The paper is organized as follows. After briefly discussing inverse estimates in
Section 2, we prove the main error bounds in Section 3. Section 4 is devoted to
particular examples of spaces of smooth piecewise polynomials to which the bounds
apply, where we concentrate on Argyris finite element. Section 5 provides a splitting
construction needed in [3].

2. Inverse Estimates. We start by establishing the inverse estimates that will
be needed below in the proof of the error bound and are, in the same time, of inde-
pendent interest in the finite element method, e.g. in [3].

The multivariate Markov inequality [6] for a simplex T ⊂ R
n,

‖Dαs‖L∞(T ) ≤ c
nd2

ρT
‖s‖L∞(T ), s ∈ Πn

d , |α| = 1,

where c is an absolute constant, implies the following inverse estimates.
Theorem 2.1. For any 1 ≤ p ≤ ∞, 0 ≤ k < µ ≤ d, we have

|s|W µ
p (T ) ≤

A

h
µ−k
T

|s|W k
p (T ), s ∈ Sd(T ), T ∈ T ,(2.1)

where the constant A depends only on n, d, p, ωT .
Proof. Let |α| = µ and g = s|T ∈ Πn

d . Since Dαg = DβDγp for some β, γ

with |β| = µ − k, |γ| = k, and since Dγg ∈ Πn
d−k, a repeated application of Markov

inequality infers

‖Dαg‖L∞(T ) ≤
a1

ρ
µ−k
T

‖Dγg‖L∞(T ) ≤
a2

h
µ−k
T

‖Dγg‖L∞(T ),

where a1 depends only on n, d, and a2 = a1ω
µ−k
T . This already proves (2.1) in the

case p = ∞. For 1 ≤ p < ∞, a simple scaling argument shows that

a−1
3 vol1/p (T )‖q‖L∞(T ) ≤ ‖q‖Lp(T ) ≤ a4vol1/p (T )‖q‖L∞(T ), q ∈ Πn

d ,(2.2)

where vol (T ) is the n-dimensional volume of the simplex T , and the constants a3, a4

depend only on n, d, p. Therefore, we get

‖Dαg‖Lp(T ) ≤
a2a3a4

h
µ−k
T

‖Dγg‖Lp(T ),

and (2.1) follows.

3. Approximation bounds. Let S be a linear subspace of Sd(T ), and let
{s1, . . . , sm} be a basis for S. Suppose that {λ1, . . . , λm} ⊂ S∗ is its dual basis,
i.e.

λisj =

{

1, if i = j,
0, otherwise.
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The following theorem provides error bounds for certain quasi-interpolation op-
erator Q : L1(Ω) → S. Note that in the applications to the finite element method
usually only the existence of an operator Q with desired approximation properties is
important. Hence it is acceptable to use such tools as Hahn-Banach Theorem in the
definition of Q.

Theorem 3.1. Suppose that for each k = 1, . . . , m, there is a set Ek ⊂ Ω such
that

Ek ⊂ starγ(vk) for an appropriate vertex vk,(3.1)

supp sk ⊂ Ek,(3.2)

‖sk‖L∞(Ω) ≤ C1,(3.3)

and

|λks| ≤ C2‖s‖L∞(Ek), for all s ∈ S,(3.4)

for some C1, C2 and γ. Moreover, assume that

Πn
`−1 ⊂ S for some 1 ≤ ` ≤ d + 1.(3.5)

Then there exists a linear operator Q : L1(Ω) → S, such that for any T ∈ T , 1 ≤ p ≤
∞, 0 ≤ |α| ≤ `, and f ∈ L1(Ω) with |f |W `

p(Ωγ
T ) < ∞,

‖Dα(f − Q(f))‖Lp(T ) ≤ Kh
`−|α|
T |f |W `

p(Ωγ

T
),(3.6)

where Ωγ
T is the union of star2γ−1(v) for all vertices v of T , and K depends only on

n, p, d, ωT , γ, C := C1C2, and the Lipschitz constant L∂Ω of the boundary ∂Ω of Ω.
As a consequence, if f ∈ W `

p (Ω), then for all 1 ≤ p ≤ ∞ and 0 ≤ |α| ≤ ` − 1,

‖Dα(f − Q(f))‖TLp(Ω) ≤ K ′|T |`−|α||f |W `
p(Ω),(3.7)

where K ′ depends only on n, p, d, ωT , C, γ, and L∂Ω.
Proof. Let us define the operator Q. In view of (3.4), each functional λk , k =

1, . . . , m, is well-defined on S|Ek
. By Hahn-Banach theorem, we extend λk from S|Ek

to Sd(T )|Ek
, such that

|λks| ≤ C2‖s‖L∞(Ek), for all s ∈ Sd(T )|Ek
,

and define Q̂ : Sd(T ) → S by

Q̂(s) =

m
∑

k=1

λk(s|Ek
)sk, s ∈ Sd(T ).

Let T be a simplex in T , and let T ⊂ Ek . In view of (3.1), diam (Ek) ≤ c1hT

and vol (Ek) ≤ c2vol (T ), with some constants c1, c2 depending only on n, γ and ωT .
(This is easy to show considering that the number of simplices in Ek is bounded by
a constant depending only on n, γ and ωT , and that any two simplices T ′, T ′′ with a
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common facet satisfy hT ′′ ≤ c̃1hT ′ and vol (T ′′) ≤ c̃2vol (T ′), for some c̃1, c̃2 depending
only on n and ωT .) Hence, for any s ∈ Sd(T ) we have in view of (2.2),

c−1
3 vol1/p (T )‖s‖L∞(Ek) ≤ ‖s‖Lp(Ek) ≤ c4vol1/p (T )‖s‖L∞(Ek),

where c3, c4 depend only on n, d, p, γ, ωT . Since the basis splines sk are also piecewise
polynomials, we have by (3.3)

‖sk‖Lp(T ) ≤ c5vol1/p (T )‖sk‖L∞(T ) ≤ c5vol1/p (T )C1,

where c5 depends only on n, d and p. Hence, assuming s ∈ Sd(T ) and applying (3.2)
and (3.4), we obtain for any T ∈ T ,

‖Q̂(s)‖Lp(T ) = ‖

m
∑

k=1

T⊂Ek

λk(s|Ek
)sk‖Lp(T ) ≤

m
∑

k=1

T⊂Ek

|λk(s|Ek
)|‖sk‖Lp(T )

≤ c5C1C2

m
∑

k=1

T⊂Ek

‖s‖L∞(Ek)vol1/p (T )

≤ c3c5C1C2

m
∑

k=1

T⊂Ek

‖s‖Lp(Ek) ≤ c6c3c5C1C2‖s‖Lp(Ωγ
T ),

where the last inequality follows from

m
⋃

k=1

T⊂Ek

Ek ⊂ Ωγ
T , T ∈ T ,

and

#{k : T ⊂ Ek} ≤ dim Sd(T )|Ωγ

T
=

(

n+d
n

)

#{T ′ ∈ T : T ′ ⊂ Ωγ
T }

≤
(

n+d
n

)

c6,

where c6 depends only on γ and ωT . Thus, we have shown that

‖Q̂(s)‖Lp(T ) ≤ c‖s‖Lp(Ωγ

T
), s ∈ Sd(T ), T ∈ T ,(3.8)

with c depending only on n, p, d, ωT , C, and γ.
In order to extend Q = Q̂ from Sd(T ) to L1(Ω), we consider, for any f ∈ L1(Ω)

and any T ∈ T , the average Taylor polynomial [4] pT (f) of degree ` − 1 with respect
to the inscribed ball of T . By the Bramble-Hilbert lemma [4, p. 100],

|f − pT (f)|W k
p (T ) ≤ Bh`−k

T |f |W `
p(T ), 0 ≤ k ≤ ` − 1,(3.9)

where B depends only on `, n, ωT . We define ŝ(f) ∈ Sd(T ) by

ŝ(f)|T = pT (f), T ∈ T ,

and set

Q(f) := Q̂(ŝ(f)), f ∈ L1(Ω).
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Clearly, Q is a projector onto S, and, in particular, in view of (3.5),

Q(p) = p, for any p ∈ Πn
`−1.(3.10)

Let us prove (3.6). Suppose that T ∈ T , 0 ≤ |α| ≤ `− 1, and |f |W `
p(Ωγ

T
) < ∞. By

using the Stein extension theorem (see e.g. [4, Theorem 1.4.5]), we extend f |Ωγ

T
to a

function f̃ defined on the convex hull U of Ωγ
T such that

|f̃ |W `
p (U) ≤ c7|f |W `

p(Ωγ

T
),

where c7 depends only on n, p, `, ωT and, possibly, on the Lipschitz constant L∂Ω if
the boundary of Ωγ

T contains a part of ∂Ω. Now, let q ∈ Πn
`−1 be the average Taylor

polynomial for f̃ with respect to a ball in U of the greatest diameter. Again by the
Bramble-Hilbert lemma, we have

|f̃ − q|W k
p (U) ≤ ch`−k

T |f̃ |W `
p(U), 0 ≤ k ≤ ` − 1,

which implies, in particular,

‖Dβ(f − q)‖Lp(Ωγ

T ) ≤ c8h
`−|β|
T |f |W `

p(Ωγ

T ), 0 ≤ |β| ≤ ` − 1,(3.11)

with c8 depending only on n, p, `, ωT , L∂Ω. Therefore,

‖Dα(f − Q(f))‖Lp(T ) ≤ ‖Dα(f − q)‖Lp(T ) + ‖Dα(q − Q(f))‖Lp(T )

≤ c8h
`−|α|
T |f |W `

p(Ωγ

T
) + ‖Dα(q − Q(f))‖Lp(T ).

By (3.10), (2.1), (3.8), and (3.11),

‖Dα(q − Q(f))‖Lp(T ) = ‖DαQ̂(q − ŝ(f))‖Lp(T )

≤
A

h
|α|
T

‖Q̂(q − ŝ(f))‖Lp(T ) ≤
c

h
|α|
T

‖q − ŝ(f)‖Lp(Ωγ
T )

≤
c

h
|α|
T

‖f − q‖Lp(Ωγ
T ) +

c

h
|α|
T

‖f − ŝ(f)‖Lp(Ωγ
T )

≤ ch
`−|α|
T |f |W `

p(Ωγ

T
) +

c

h
|α|
T

‖f − ŝ(f)‖Lp(Ωγ

T
).

Now, since hT ′ ≤ c9hT , for all T ′ ∈ T such that T ′ ⊂ Ωγ
T , where c9 depends only on

n, γ and ωT , we have by (3.9)

‖f − ŝ(f)‖L∞(Ωγ

T
) = max

T ′∈T

T ′⊂Ω
γ
T

‖f − pT ′(f)‖L∞(T ′)

≤ B max
T ′∈T

T ′⊂Ω
γ
T

h`
T ′ |f |W `

∞
(T ′) ≤ Bc9h

`
T |f |W `

∞
(Ωγ

T
)

in the case p = ∞, and

‖f − ŝ(f)‖p
Lp(Ωγ

T )
=

∑

T ′∈T

T ′⊂Ω
γ
T

‖f − pT ′(f)‖p
Lp(T ′)

≤ Bp
∑

T ′∈T

T ′⊂Ω
γ
T

h
`p
T ′ |f |

p
W `

p(T ′)
≤ Bpc

p
9h

`p
T |f |p

W `
p (Ωγ

T
)

6



in the case 1 ≤ p < ∞, which completes the proof of (3.6).
To show (3.7), we first consider the case p = ∞. For some T ∗ ∈ T , we have by

(3.6),

‖Dα(f − Q(f))‖TL∞(Ω) = ‖Dα(f − Q(f))‖L∞(T∗) ≤ Kh
`−|α|
T∗ |f |W `

∞(Ωγ

T∗ )

≤ K|T |`−|α||f |W `
∞

(Ω).

Assume now that 1 ≤ p < ∞. Then by (3.6),
(

‖Dα(f − Q(f))‖TLp(Ω)

)p

=
∑

T∈T

‖Dα(f − Q(f))‖p
Lp(T )

≤ Kp
∑

T∈T

h
(`−|α|)p
T |f |p

W `
p(Ωγ

T
)

≤ Kp|T |(`−|α|)p
∑

T∈T

∑

T ′∈T

T ′⊂Ω
γ
T

|f |p
W `

p(T ′)
.

Now
∑

T∈T

∑

T ′∈T

T ′⊂Ω
γ
T

|f |p
W `

p(T ′)
=

∑

T∈T

#{T ′ ∈ T : T ⊂ Ωγ
T ′}|f |

p
W `

p(T )
,

and since T ⊂ Ωγ
T ′ ⇔ T ′ ⊂ Ωγ

T , we have

#{T ′ ∈ T : T ⊂ Ωγ
T ′} = #{T ′ ∈ T : T ′ ⊂ Ωγ

T } ≤ c6,

and, hence,
(

‖Dα(f − Q(f))‖TLp(Ω)

)p

≤ c6K
p|T |(`−|α|)p

∑

T∈T

|f |p
W `

p(T )

= c6K
p|T |(`−|α|)p|f |p

W `
p(Ω)

,

which completes the proof of (3.7).

Bases with properties (3.1)–(3.4) are called stable local bases. Indeed, (3.1) and
(3.2) imply that the basis functions sk have local support, and it follows from (3.1)–
(3.4) that they are stable in L∞ in the sense that for any real α1, . . . , αm,

K1 max
1≤k≤m

|αk| ≤
∥

∥

∥

m
∑

k=1

αksk

∥

∥

∥

L∞(Ω)
≤ K2 max

1≤k≤m
|αk|,(3.12)

where K1, K2 depend only on n, d, ωT , γ, C1, C2.
It can also be shown [7, Lemma 6.2] that, after renorming, the basis s1, . . . , sm is

stable in Lp, 1 ≤ p < ∞, that is

K1

(

m
∑

k=1

|αk|
p
)1/p

≤
∥

∥

∥

m
∑

k=1

αk s̃k

∥

∥

∥

Lp(Ω)
≤ K2

(

m
∑

k=1

|αk|
p
)1/p

,(3.13)

where

s̃k = vol−1/p(Ek) sk,

and K1, K2 depend only on n, d, ωT , γ, C1, C2.
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4. Spaces of smooth piecewise polynomials with stable local bases.

Bases with properties (3.1)–(3.4), with γ = 1 and C1, C2 depending only on d, are
available for Sr

d(T ) and certain subspaces of it on arbitrary T if d ≥ r2n + 1, see [7]
and references therein. In the case of two variables, [10] provides a construction of
bases for Sr

d(T ) satisfying (3.1)–(3.5), with γ = 3 and C1, C2 depending only on d, as
soon as d ≥ 3r + 2. There are many more results on stable local spline bases in re-
cent literature, especially in the contexts of high order macro-elements and Lagrange
interpolation methods, see e.g. [1, 2, 11, 15] and references therein. (See also [13].)

Some classical spaces of smooth finite elements, for example those based on Ar-
gyris element [4, Example 3.2.10], can be interpreted as so-called super spline sub-
spaces of Sr

d(T ) [16], and their associated bases are easily seen to satisfy the require-
ments of Theorem 3.1.

Specifically, for the Argyris element we have in the notation of Theorem 3.1,

S = {s ∈ S1
5(T ) : s is C2 smooth at any vertex v of T }.(4.1)

Clearly, (3.5) is satisfied with ` = 6. The functionals λk : S → R are function
evaluations, weighted first and second derivatives at the vertices,

s(v), hT
∂s

∂x1
(v), hT

∂s

∂x2
(v), h2

T

∂2s

∂x2
1

(v), h2
T

∂2s

∂x2
2

(v), h2
T

∂2s

∂x1∂x2
(v),(4.2)

and weighted first order normal derivatives at the middle points of the edges of T ,

hT
∂s

∂n
( v1+v2

2 ),(4.3)

where hT is the diameter of a triangle in T containing the corresponding evaluation
point v or v1+v2

2 from (4.2), (4.3). The sets Ek = supp sk are either star (v) for the
functionals of type (4.2), or the unions of two triangles sharing the edge [v1, v2] in case
(4.3). Hence, (3.1) and (3.2) are satisfied with γ = 1. Furthermore, by estimating the
norms of local Hermite interpolation operators, it can be shown that ‖sk‖L∞(Ω) ≤ C1,
where C1 is an absolute constant, see [7, Lemma 3.3]. Similarly, in view of the inverse
estimates (2.1), |λks| ≤ C2‖s‖L∞(Ek), for any s ∈ S, where C2 is again an absolute
constant, see [7, p. 292]. Thus, (3.3) and (3.4) hold true with C = C1C2 being an
absolute constant.

5. Stable Splitting S = S0 + Sb. In the finite element method an important
role is played by spaces of finite elements vanishing on (parts of) the boundary. We
set

S0 = {s ∈ S : s|∂Ω = 0}.

Because of its utility in [3], we now consider the possibility to split S into a direct
sum

S = S0 + Sb

such that there exists a basis {s1, . . . , sm} for S satisfying the hypotheses (3.1)–(3.4)
of Theorem 3.1 (i.e., a stable local basis), with {s1, . . . , sm0

} being a basis for S0 and
{sm0+1, . . . , sm} a basis for Sb.

We provide a construction in the case n = 2 and S ⊂ S1
5(Ω). Instead of (4.1),

consider

S = {s ∈ S1
5(T ) : s is C2 smooth at any interior vertex v of T }.(5.1)
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Thus, in contrast to Argyris element, the functions in S are not necessarily C2 at the
boundary vertices.

We now describe a set of functionals {λ1, . . . , λm} ⊂ S∗, such that the desired
basis {s1, . . . , sm} for S will be uniquely defined by duality

λisj = δi,j :=

{

1, if i = j,
0, otherwise.

The set {λ1, . . . , λm} includes
(a) the functionals (4.2) for all interior vertices v of T ,
(b) the functionals (4.3) for all edges of T , and
(c) the following functionals for each boundary vertex v of T :

s(v), hT
∂s

∂e0
(v), hT

∂s

∂e⊥0
(v), h2

T

∂2s

∂e2
0

(v), . . . , h2
T

∂2s

∂e2
n

(v), h2
T

∂2s

∂e0∂e1
(v),

where e0, . . . , en are all edges of T emanating from v, in counterclockwise
order, with e0 and en being the boundary edges.

Here the symbol
∂

∂e
denotes the usual directional derivative in the direction of edge

e, and
∂

∂e⊥
in the orthogonal direction. The above second order edge derivatives

∂2s

∂e2
0

(v), . . . ,
∂2s

∂e2
n

(v),
∂2s

∂e0∂e1
(v)

are well defined (and independent from each other even if some edges are collinear)
despite s being only C1 at the boundary vertices, see [9]. This choice of the de-
grees of freedom at boundary vertices in (c) is motivated by the Morgan-Scott basis
construction [14] and is shown to be stable in [9].

Following the argumentation in [9], one can see that the basis {s1, . . . , sm} for S,
defined by duality, satisfies (3.1)–(3.4) with γ = 1 and bounded C1, C2. Hence it is
a stable local basis. Moreover, (3.5) is obviously true for S with n = 2 and ` = 6.
Therefore, Theorem 3.1 applies to this basis.

To determine the subsets of {s1, . . . , sm} which generate S0 and Sb, respectively,
we now split the functionals in (c) into two groups (c1) and (c2) as follows.

(c1) The first group includes

h2
T

∂2s

∂e2
1

(v), . . . , h2
T

∂2s

∂e2
n−1

(v), h2
T

∂2s

∂e0∂e1
(v),

for all boundary vertices, and, in addition, hT
∂s

∂e⊥0
(v) for those boundary

vertices, where e0 and en are collinear.
(c2) The second group includes

s(v), hT
∂s

∂e0
(v), h2

T

∂2s

∂e2
0

(v), h2
T

∂2s

∂e2
n

(v),

for all boundary vertices, and, in addition, hT
∂s

∂e⊥0
(v) for those boundary

vertices, where e0 and en are not collinear.
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Let now {λ1, . . . , λm0
} list all functionals λi in (a), (b), and (c1), and let {λm0+1, . . . ,

λm} be those in (c2). It is easy to see that

S0 = {s ∈ S : λm0+1s = · · · = λms = 0}.

Therefore S0 = span {s1, . . . , sm0
}, and Sb := span {sm0+1, . . . , sm} is its complement

in S as required.
Clearly, both {s1, . . . , sm0

} and {sm0+1, . . . , sm} are stable local bases as subsets
of the stable local basis {s1, . . . , sm}.

Note that hT
∂s

∂e⊥0
(v) belongs to (c1) or (c2) depending on whether e0 and en are

exactly collinear or not. In particular it is in (c2) if e0 and en are near-collinear, but
not collinear, a situation which may appear quite often when a polygonal domain
is an approximation of a smooth domain. As e0 and en become exactly collinear,

hT
∂s

∂e⊥0
(v) moves to (c1). Thus, the dimensions of S0 and Sb jump if a vertex shared

by collinear boundary edges is slightly perturbed. This ’dimension instability’ is
related to a well-known similar phenomenon in the theory of bivariate splines, where
the dimension formulas for the spline spaces depend on some geometric information
about the placement of the vertices. This behaviour is compatible with the availability
of stable bases, see for example the discussion in [10, Remark 13.1].

Since λi are function evaluations or derivatives of at most second order, one may
apply them to any sufficiently smooth functions, thus leading to the interpolation
operator I : C2(Ω) → S, defined by

I(f) =

m
∑

i=1

λi(f)si.(5.2)

An obvious property of this operator is

f |∂Ω = 0 =⇒ I(f) ∈ S0.(5.3)

It is easy to see that operator I can be used in the proof of Theorem 3.1 in place of
Q, if one is only interested in sufficiently smooth f .

Finally, consider the operator Ib : C2(Ω) → Sb, defined by

Ib(f) =

m
∑

i=m0+1

λi(f)si.(5.4)

Clearly,

Ib(f)|∂Ω = I(f)|∂Ω.(5.5)

Hence, by the trace theorem (see [4, Theorem 1.6.6]), we obtain for any 1 ≤ p ≤ ∞,

‖f − Ib(f)‖Lp(∂Ω) ≤ C‖f − I(f)‖
1−1/p
Lp(Ω)‖f − I(f)‖

1/p
W 1

p (Ω),

where C is a constant depending only on p and the Lipschitz constant L∂Ω of ∂Ω.
This allows to find a bound for ‖f − Ib(f)‖Lp(∂Ω), see (5.8) below, using the estimates
available for ‖f − I(f)‖Lp(Ω) and ‖Dα(f − I(f))‖Lp(Ω), |α| = 1.

We summarize the results proven in this section in the following theorem.
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Theorem 5.1. For the space S defined in (5.1), there exists a basis {s1, . . . ,

sm} satisfying (3.1)–(3.5), such that {s1, . . . , sm0
} is a basis for S0 = {s ∈ S :

s|∂Ω = 0}. Hence, the operator Q : L1(Ω) → S defined in the proof of Theorem 3.1
satisfies (3.6) and (3.7). Moreover, the interpolation operators I : C2(Ω) → S and
Ib : C2(Ω) → Sb defined by (5.2) and (5.4), respectively, have the following properties.

(a) If f |∂Ω = 0, then I(f) ∈ S0.
(b) Suppose that f ∈ C2(Ω) and let 1 ≤ p ≤ ∞, ` ≤ 6, be such that W `

p (Ω) ⊂
C2(Ω). Then for any 0 ≤ |α| ≤ ` − 1,

‖Dα(f − I(f))‖Lp(T ) ≤ Kh
`−|α|
T |f |W `

p(Ω1

T
), for any T ∈ T ,(5.6)

and, as a consequence

‖Dα(f − I(f))‖TLp(Ω) ≤ K ′|T |`−|α||f |W `
p(Ω).(5.7)

Moreover,

‖f − Ib(f)‖Lp(∂Ω) ≤ K ′′|T |`−1/p|f |W `
p(Ω).(5.8)

The constants K, K ′, K ′′ depend only on p, ωT , and the Lipschitz constant L∂Ω.

Remark 5.2. We conjecture that for any n, r with d ≥ r2n +1, the techniques of
[7] can be used to generalize Theorem 5.1 to S = Sr

d(T ) and certain subspaces of Sr
d(T )

defined similar to (5.1). In addition, an extension to bivariate piecewise polynomials
on domains enclosed by picewise algebraic curves is under consideration.

Acknowledgement. The author is sincerely grateful to Professor Klaus Böhmer for
fruitful discussions and stimulating problem settings.

REFERENCES

[1] P. Alfeld and L. L. Schumaker, Smooth macro-elements based on Powell-Sabin triangle splits,
Advances in Comp. Math. 16 (2002), 29–46.
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