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Abstract. We show that stable local bases for the spaces of polynomial
splines on a triangulation of a bivariate polygonal domain can be efficiently
computed by using either singular value decomposition or pivoted QR-
decompositon of certain small matrices of nodal smoothness conditions.

§1. Introduction

Let S7(A) denote the space of polynomial splines of degree d and smoothness
r on a triangulation A of a polygonal domain €,

Si(A)={s e C"(Q): s|r € Pq for all triangles T' € A},

where Py is the space of bivariate polynomials of total degree d. The question
of constructing well-behaved bases for §j(A) is practically important, espe-
cially because the spaces §§(Ag), SJ(A1),...,8)(Ay), ... are nested if the se-
quence of triangulations Ag, Ay, ..., Ay, ... of Qis obtained by consecutive re-
finements of A\g, see [5,13]. For the multiresolution applications a construction
of a stable locally supported basis sq,...,sp for S§(A) is needed, where (L,-)

stability means that for all choices of the coefficient vector ¢ = (¢1,...,¢p),
D
Kiflel, < 1) cisills < Kalle], (1)
=1

with constants Ky, Ky depending only on r,d and the smallest angle 6 in
A. Bases for §j(A) with this properties are known if d > 3r 4 2, see [8,9].
Standard finite-element bases available for d > 4r 4+ 1 (see e.g. [16]) are also
stable and locally supported. However, they span subspaces of §7(A) that are
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not nested. The same applies to the stable local superspline bases constructed
for d > 3r + 2 in [3,12].

It is well-known [1,10,11,14,15] that the dimension of Sj(A) depends on
the geometry of the triangulation and is generally instable, v.e., 1t may change
as certain vertices are slightly perturbed. In other words, the number of basis
functions suddenly changes. This may raise a question whether the stable
local bases are practically computable in the presence of such anomalies.

The main purpose of this paper is to show that the answer to this question
is positive for r = 1 and r = 2, which are the most important cases in
practice. Note that we study in this respect the algorithm of constructing
stable local basis by using orthogonal decomposition of matrices of nodal
smoothness conditions suggested recently in [6]. This algorithm is easy to
implement by using standard codes of computing singular value decomposition
or pivoted QR-decomposition of small matrices, see Section 3. Moreover,
1t applies to spline spaces in more than two variables if the degree i1s high
enough. However, in the case of bivariate splines we have to restrict ourselves
to d > 4r + 1 since this method does not work if 3r + 2 < d < 4r, in contrast
to the more sophisticated methods of [9]. Obviously, this makes no difference
if r =1, and we have to consider d > 9 instead of d > 8 if r = 2.

The paper is organized as follows. In Section 2 we recall the construction
of [6] in the case of splines of two variables. In Section 3 we discuss two
orthogonal decompositions to be used to compute the bases for the null spaces
of local smoothness matrices. Section 4 is devoted to the crucial question of
the influence of the tolerance ¢ needed for the orthogonal decompositions
because of the roundoff errors. Finally, in Section 5 we present the results of
our numerical experiments showing that stable local basis splines with desired
properties can indeed be efficiently computed.

§2. Construction of a Stable Local Basis

Let V and & be the sets of all vertices and all edges of the triangulation A.
Given an edge e € £, we denote by D, and D, . the derivative in the direction
parallel or perpendicular to e, respectively. The linear functional evaluating
any function at { € Q will be denoted by .

Consider the following set N of nodal linear functionals on Sj(A),

V= (U Unu)u (U)o (U )

veEY ¢q=0
where for each T' = (vy, vy, v3) € A,
_1yvy +igvy + 303
d

: l1+l2+l3:d, i1,i2,2'3>7‘},
for each edge e = (vq, vs),
N, = {55DZL :q=0,...,r, £EE, 4},

— 1101 + 1202
Eeqg={{=——F—"

d : i1+i2:da i1,i2>2T—q},
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and for each vertex v € V and ¢ = 0,...,2r, the set NV, , is defined as follows.
Let Tl = (v,v,0i41), t = 1,...,n,, be the triangles in A attached to v in
counterclockwise order. (If v is an interior vertex, then v,,+1 = vi. If v lies
on the boundary of 2, then vy and vy, 41 are distinct boundary vertices.) Let,

furthermore, e; = (v,v;), i = 1,...,n, + 1, and 6; = Zejeip1, i = 1,...,ny.
We set

n,

Ny = L_J{51,DZZ,_‘”D&_I_1 s a=0,...,q},

=1
where for any s € Sj(A), Di~*Dg s = Dg:aD§i+ls|T[i] if ¢ > r. Since
8, DY 5| -1 = 6, DY 8| for all ¢, each functional §, D!, is present only once
n vaq.

Suppose that d > 4r + 1. A complete system of linear relations for the
functionals in A (so called nodal smoothness conditions) is given by the equa-
tions

(e

ﬁ)“l‘a_ﬂ sin™"0;4 8,D]_ DI77 =0, (2)

sin~*6; §,DI"* D — Z(—1)ﬂ<
B=0

foralv eV, g=1,...,2r,a =1,...,min{r, ¢}, and for each ¢ such that e; is
an intertor edge (i.e., i =1,...,n, if vis an interior vertex, and i = 2,...,n,
if v is a boundary vertex of A). Here

sin(6;,_ + 6;
pi o= S0 28] )

sin 8; sin 6, 4
and we 1dentify vsq,, = vy, €4, = e¢ if v 1s an interior vertex. Note that
nodal smoothness conditions were used in [4,6-8,14]. The complete system of
linear relations (2) has been discussed in [8] for r = 1 and in [6] for the general
case of splines of n > 2 variables.
Denoting by R the matrix of nodal smoothness conditions (2), we see
that R is block diagonal, namely

R:[RV 0]7

where

RV — diag(Rv)U€V7 RU = diag(qu)?r

qg=1>

each block R, , corresponding to the relations between derivatives of order
q at vertex v, and O 1s a zero matrix that corresponds to nodal functionals
in Nyo, v €V, Neye€ &, and Np, T € A, not involved in any smoothness
conditions.

Given any spline s € S7(A), the column vector

p(s) = (vs)ven (4)
belongs to the null space of R,
null(R) := {a € R*V : Ra = 0}.
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Moreover, the mapping ¢ : S7(A) — null(R) defined by (4) is a linear iso-
morphism, which follows from the facts that R is the matrix of a complete
system of linear relations for NV, and that for each T € A\, the functionals in

N(T) ::( U GNM)U ( U Ne> UNT

veYNT ¢g=0 :gi
constitute a well-posed Hermite interpolation scheme for bivarite polynomials
of total degree d, see e.g. [16]. Therefore, ¢ is invertible, and, given a =
(ay)ven € null(R), each polynomial piece s|7 of s = ¢ '(a) € S;(A) can be
computed from the interpolation conditions vs|p = a,, v € N(T).

We will call every matrix A whose columns form a basis for null(R) a
basis matrix for Sj(A). Owing to the block diagonal structure of R, we can
construct a basis matrix for S§(A) from blocks that are basis matrices with
respect to the blocks of R. More precisely, for each v € V, ¢ = 1,...,2r, let
A, ¢ be a matrix whose columns form a basis for null(R,, ). Let, furthermore,

Ay = diag(A,)vev, Ay = diag(AWl)zr

qg=1>

and I a unit matrix of size #V + #N. + #N7. Then

_ |4y O
=[5 9]
is obviously a basis matrix for §§(A). The number D of columns altl, ... alPl
of A equals the dimension of §j(A), and the splines
S :cp_l(a[i]), i=1,...,D, (5)

form a basis for SJ(A).

The following theorem is the restriction to splines of two variables of the
main result of [6].

Theorem 1. Let d > 4r + 1. Suppose that for eachv € V and q=1,...,2r,
the columns of A, ; form an orthonormal basis for null(R, ). Then the splines
s; defined by (5) form an L,-stable local basis for Sj(A), 1 < p < oo, after a

proper renorming.

We note that the support of each s; 1s either a subset of the union of
all triangles attached to a vertex, the union of at most two triangles sharing
an edge, or a single triangle, depending on whether the i-th column of A
corresponds to a vertex, an edge, or a triangle of A.

Remark. The idea to analyse the null space of the matrix of smoothness con-
ditions was suggested in [2] in the context of Bernstein-Bézier representation
of bivariate splines. The advantage of nodal smoothness conditions used here
1s that the associated matrix R i1s block diagonal, even in the case of more
than two variables, see [6].
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§3. Orthogonal Decomposition of Smoothness Matrices

In order to comlete the algorithm of constructing stable local bases for Sj(A),
it remains to specify how we compute the basis matrices A, ;. Two standard
techniques from computational linear algebra to find an orthonormal basis for
the null space of a matrix are based on the singular value decomposition and
pivoted QR-decomposition, respectively, see e.g. [17].

SVD. Compute the singular value decomposition (SVD) of R, 4,

Rv,q = QLSan

where Q)1,, Qr are orthogonal matrices, S 1s of the same size as R, g,

op 0 0 0 0
g _ 0 0.2 0 ’
0 0 i on 0 -0
0L 2092 2 0p,,, >E20p 412 20y > 0are the singular values

of Ry 4, with ¢ > 0 being a tolerance. Then A, , i1s obtained from Qg by
removing its first p,,q columns.

PQR. Compute the pivoted QR-decomposition (PQR) of RT

T T _
v Bogl” =
QST i.e.,

PR, ,=SQ",

where P is a permutation matrix, ) is an orthogonal matrix, S is a lower
triangular matrix of the same size as R, g,

di 0 0 0 0
g — X (1'2 0 :
X X dm 0o --- 0

the diagonal elements of S satisfy |dy| > |d2| > -+ > |dpqu| >e > |dppqr+1| >
-+ > |dm| > 0, with ¢ > 0 being a tolerance. Then A, ; is obtained from @
by removing its first p,,, columns.

Note that in theory we can simply take ¢ = 0, such that psya = pper =
rank(R, ;). However, for practical computations it is necessary to introduce
the tolerance ¢ because of the unavoidable roundoff errors in the entries of
R, 4. As we will see in the next sections, the choice of ¢ is decisive for the
performance of the algorithm.
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§4. Choice of Tolerance

A well known difficulty in the implementation of the bases for the full spline
spaces S7(A) is the fact that the dimension of S7(A) is instable in general,
i.e., a small perturbation of the location of vertices of a triangulation may lead
to a change in the dimension of the space, see e.g. [15]. In other words, in the
presence of some exceptional geometric configurations (such as a quadrilateral
singular cell where the central vertex is the intersection point of two diagonals)
the dimension of Sj(A) is higher than generically. This means that after a
small perturbation of an exceptional configuration, say a perturbation due to
the roundoff, the number of basis functions drops. For example, the dimension
of the space S3(A) on a singular cell A is 44, whereas it is only 43 on a near-
singular cell, see Fig. 1.

Fig. 1. Singular, respectively near-singular cell.

In order to figure out what actually happens when we use the above
algorithm to compute a basis for the spline space on such a near-ezceptional
configuration, we first make the following observations.

e The piecewise polynomials s; (more precisely, their local degrees of free-
dom such as Bézier coeflicients of each s;|7) can always be computed
from (5) by using the Hermite interpolation scheme specified for each
T C supps; by the set of nodal functionals A'(T). This computation
only requires to solve for each T a system of (d-l2_2) linear equations that

is well-conditioned provided the smallest angle A of A is not too small.

o Regardless of the geometry of the triangulation and the choice of the
tolerance ¢, s; are always continuous and have local supports. They satisfy
the stability requirement (1) with constants depending only on r,d and
O, since the columns of A are orthonormal.

o If the tolerance ¢ is too small, it may happen that we rule out some basis
functions that are needed to span Sj(A).

o If the tolerance ¢ is too high, we may get some additional basis functions

that are actually not in the space Sj(A).

Let us consider this last case in more detail. Given ¢ > 0, let

A% = [all. . glP) = [fg; (1)]

be the basis matrix computed by the above algorithm using either SVD or
PQR decomposition of R, ,’s with tolerance ¢. The splines

sich_](a[i’]), i=1,...,D°,
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are certainly in S9(A). Moreover, s; is C"-smooth and as such lies in S7(A)
if and only if Rall = 0. Suppose the first M* columns of A° include elements
of the submatrix A3j,. Then the splines s;, + = M® +1,...,D®, are always
in §3(A). Each s, i = 1,...,M?, corresponds to a block A5, = of Aj, and
is C'"-smooth if and only if Rvi’qi&[i] = 0, where al! is the column of AL
consisting of the components of a;. Thus, that our additional splines are not
in §§(A) simply means that Rvi,qid[i] is nonzero.

However, due to the roundoff errors, thqié[i’] can never equal zero exactly
on a computer, except some trivial situations, even if s; is theoretically in
Si(A). Therefore, a spline s; should be regarded numerically C"-smooth as
soon as || Ry, 4;@" || is reasonably small.

Fortunately, we can easily estimate | R,, 4, al’l || in terms of the tolerance
¢. Indeed, for each s;, ¢t =1,..., M*®, we have

||Rvi7qia[i]||2 < Opspatl <e for SVD7
||Rvi7fIia’[i]||oo <ld,,,.+1] <e for PQR,

Ppqr
where pgyd, ppgr are chosen as in Section 3. The first inequality is obvious,
and for a proof of the second one see e.g. [17, p. 370].

Thus, we conclude that the splines s1,...,sp= are numerically C"-smooth
if the tolerance ¢ 1s reasonably small. On the other hand, since we do not want
to miss any basis splines needed to span Sj(A), the tolerance should not be
too small.

It 1s a well known fact that the singular values continuously depend on
the matrix, and hence they do not change significantly if the matrix R, 4 is
slightly perturbed (say, by the roundoff errors). Therefore, if we are using
SVD to compute the matrices A} =~ and if the accuracy of the computations
is high enough (.e., the rounding unit e is sufficiently small), then we can
choose the tolerance ¢ as small as we want without missing the essential basis
splines. The PQR decomposition is cheaper to compute, but it is not as
reliable as SVD and there are examples when it fails to reveal the (numerical)
rank deficiency of a matrix, see [17, p. 374]. This means that we do risk to
miss some basis functions if we are using PQR. (Note that this has never
happened in our numerical experiments described below.)

§5. Numerical Tests: Cells with Four Edges

The disscussion in the previous section shows that it is crucial to find minimal
values of tolerance ¢ for which the above algorithm produces enough basis
functions to span the full space Sj(A). To get an idea how small this ¢ can
be, we performed a number of numerical experiments for C'” splines, r = 1, 2.
According to Section 2, an orthogonal decomposition has to be computed
for smoothness matrices R, 4, ¢ = 1,...,2r for each vertex v. We restrict
ourselves to interior vertices with four attached edges, since this includes the
most interesting cases of singular and near-singular cells as in Fig. 1. It follows
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from well-known formulas for the dimension of spline spaces on cells [15], that
for C'! splines,

dimnull(R, 1) = 2,
dimnll(R, 2) { if vis s_lngular,
otherwise,
and for C? splines,
dim null(R =2, dimnull(R, ») = 3,

dim null(R , 1f v is semisingular,

{ , 1if v is singular,

otherwise,

. if v 1s singular
d | . ’

im nll(Ry,4) = {8, otherwise,
where semisingular means that two of the edges attached to v are parallell, and
the other two are not.

Note that the matrix R, ; is the same for both » =1 and r = 2, and that

in C'! case we investigate the simplified matrix

—py 1 0 0 0 O 0 1
B 0 1 —py 1 0 O 0 0
w2710 0 0 1 —pz 1 0 0
0 0 0 0 0 1 —pg 1
instead of
— sin~ 16, 0 0 0 0 0 sin~'6,
R, 0 sin~ 16, — L2 sin” 16, 0 0 0 0
v, 0 0 0 sin” 16, — L3 sin”" 16 0 0
0 0 0 0 0 sin"'63 —p4 sinT'é,

(See Section 2 for the definitions of y; and #6;.)

Our experiments were performed with MATLAB (version 5.3) on a Sun
Ultra 60 workstation. At least 50 millions cells with four edges have been
tested, with the smallest angle always at least 7/10. The results are presented

in Tab. 1 (for SVD) and Tab. 2 (for PQR decomposition).

| r ‘ matrix || size ‘ € | tmean | Omaz | Ormaz |
lor2| R, 4 x4 | 14ep | 1.3939e-04 | 3.9968e-15 —

1 ]:{),U’Q 4x8 0 2.2251e-04 | 3.6082¢-15 | 2.9086e-16
2 R, 8% 8 | 682y | 3.7429e-04 | 2.3981e-14 —
2 R,3 || 8x 12| 24ep | 5.7217e-04 | 3.1974e-14 | 6.4575e-15
2 R,. | 8x16 | 28 | 6.5097e-04 | 2.4869e-14 | 5.6034e-15

Tab. 1. SVD.
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| r |matrix] size | ¢ | toewn | Omaw | Opmas |
lor2 Ry, 4x4 | 22¢;r | 1.3051e-04 | 4.2188e-15 —
1 Rv’g 4x8 | 1.8y | 1.7471e-04 | 4.1356e-15 | 4.6638e-16
2 R, 8 x 8 | bleys | 2.7389e-04 | 3.0198e-14 —

2 R, 3 8 x 12 | 27eps | 3.5814e-04 | 2.9976e-14 | 3.8858e-15
2

Ry 8 x 16 | 60cps | 4.4264e-04 | 2.9643e-14 | 7.5763e-15

Tab. 2. PQR.

Here ¢ is the tolerance (eyr = 27°% & 2.2204e-16 denotes the rounding
unit in the standard double-precision arithmetic) chosen such that the num-
ber of columns of A7 , constructed with the corresponding decomposition is
greater or equal dimmnull(R, ). The last three colunms of each table measure
the efficiency of the algorithm: #yean 1s the average CPU time in seconds used
to compute SVD, respectively PQR decomposition of a matrix (note that we
are using the MATLAB built-in functions svd and qr), dmax is the maximal
value of | Ry 4|/ for the columns a of all matrices A , appeared in the tests,
and Oy ayx 1s the maximum of the angles between (v, v;) and (v;42,v) in all cases
when the algorithm considers the edges ¢; = (v,v;) and e;49 = (v,vi42) to
be parallell, which leads to constructing additional basis functions. Since the
dimensions of null(R, ;) and (in C? case) null(R, 2) are stable, O,y does not
apply to these matrices.

These experiments show that the basis functions for S7(A), r = 1,2, on
a cell with four edges can be computed by using resonably small tolerance ¢.
The basis functions are numerically C'"-smooth and additional basis functions
only appear if the cell is “numerically singular”, respectively “numerically
semisingular”.
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