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Oleg Davydov and Allan Pinkus

Abstract. We study best uniform approximation of periodic functions from

{ / " Ko, h(n)dy: ()] < 1}

where the kernel K(z,y)is Strictly Cyclic Variation Diminishing, and related problems
including periodic generalized perfect splines. For various approximation problems of
this type, we show the uniqueness of the best approximation and characterize the best
approximation by extremal properties of the error function. The results are proved by
using a characterization of best approximants from quasi-Chebyshev spaces and certain
perturbation results.

§1. Introduction

This paper is about some approximation problems related to Cyclic Variation Diminishing
(CV D) kernels. CV D kernels are the periodic analogues of Totally Positive (T'P) kernels.
CV D kernels were introduced and discussed in two papers by 1. J. Schoenberg (and coau-
thors) ([5] and [8]) in 1958 and 1959. A more comprehensive consideration is to be found
in the book of Karlin [4, Chaps. 5 and 9]. We first define the relevant concepts. We will
later return to a general discussion of C'V D kernels.

In what follows C' will denote the set of continuous 27-periodic functions defined on
all R. (The period 27 is chosen for no particular reason.) By C? we mean the two-
variable functions (kernels) defined on all of IR* which are continuous and 27-periodic in
each variable.

Definition 1.1. Let K € C2. We say that K is a Cyclic Variation Dimanishing kernel of
order 2m — 1 (CV Dq,, 1 ) if there exist ¢, € {—1,1}, n =1,...,m, such that

K ( - ) — e det{K(2i,y;)}212) 2 0 (1.1)

Yiy-- -5 Y2n—1

forallzy < - < x9p_1 <x1+2mandy; < -+ < yan_1 < yy +27. We say that the kernel
K is Strictly Cyclic Variation Diminishing of order 2m—1 (SCV Dy, _y ) if strict inequality
always holds in (1.1). The kernel K is said to be Eztended Cyclic Variation Diminishing
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of order 2m — 1 (ECV Dyp,—y ) if K is 2m — 1 times continuously differentiable, and the
above determinants are strictly positive for all choices of x1 < -+ < 9,1 < x1 + 27 and
y1 < -+ < yan—1 < Y1 + 27, where in case of equal x; (or y; ) we replace the corresponding
rows (columns) by successive derivatives.

We will drop the subscript 2m — 1 from the acronyms CVD, SCVD or ECVD if we
assume that these properties hold for all orders.

Note that the only determinantal conditions imposed are those on the odd order
minors. This “restriction” is a consequence of the periodicity (and a simple rotation of
columns or rows). That is, we always have

- <I‘1,.172,...,.]32n>_ - <.]31,.172,...,.]32n)
K =—K ,
Y1, 92,5 Y2n Y255 Y2n; Y1
and the “correct” ordering has been maintained. (This is essentially equivalent to the
fact that periodic functions have an even number of sign changes (or zeros if the count
is done correctly).) Thus (1.1) cannot possibly hold for even order minors (except in
the uninteresting case where the associated determinants are all identically zero). This
restriction is a serious drawback and generally weakens the theory. In the standard non-
periodic TP case a determinantal inequality of the form (1.1) holds for all orders, and this
results in a “stronger” theory. The periodicity is, in a certain sense, a partial compensation.
Essentially equivalent to the CV D, SCV D and ECV D properties are certain variation

diminishing properties, see Karlin [4, Chap. 5, Theorem 6.1]. To explain, let S.(f) denote
the number of sign changes of f € C on a period. Zc(f) will count the number of zeros
of f where nodal zeros (sign changes) are counted once, and nonnodal zeros (zeros which
are not sign changes) twice. Z*(f) will, for f sufficiently smooth, denote the number of
distinct zeros of f, counting multiplicities. For a vector ¢ = (¢1,...,ck), we let S.(c)
denote the number of (weak) periodic sign changes in the vector c¢. By this we mean the
number of sign changes in any of the sequences

Cjyees s ChkyClynnny Cj

where ¢; # 0, and zero components are discarded. Note that all these values are even

numbers (or infinite). We also need the number of sign changes of a 2r-periodic Borel

measure . We say that such a measure has 2n relevant sign changes, denoted by S.(u) =

2n, if there exist disjoint sets Ay < .-+ < A, < Ay + 2w, with U2", A; = [a,a + 27) (some

a), such that (—1)'y is a nonnegative measure on A; and p(4;) #0,i=1,...,2n. If his

a summable 27-periodic function, then by S.(h) we mean S.(p) where du(y) = h(y)dy.
An essentially equivalent definition to the C'V D property of the kernel K is that

Se(9) < Sep)

for all p as above, where
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And similarly, K is SCV D if and only if (up to some minor details)

Z(g9) < Se(p)

for all p and ¢ as above. Finally, K is ECV D if and only if (up to those minor details
again)

Z¥g) < Se(p)

for all p as above, and ¢ sufficiently smooth.

The original two papers which dealt with CV D kernels were [8] by Pélya and Schoen-
berg, and [5] by Mairhuber, Schoenberg and Williamson. Schoenberg had, over the years,
developed a theory of totally positive kernels, especially totally positive difference kernels
(called Pélya frequency functions). The two papers [5] and [8] were the first to consider
the periodic versions thereof. As we have already remarked, the even order minors cannot
possibly be of one strict sign and this complicates the theory. (The theory is even today
not nearly as complete as the theory of Pélya frequency functions.)

In the first paper [8], Pdlya and Schoenberg studied the de la Vallée Poussin means.
Let
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The transformation

"o

Vin(z) = = / e —y)f(y) dy

defines the de la Vallée Poussin means (or V-means) of f. V,, is a trigonometric polynomial
of degree at most m, and for every f € C the Vi, uniformly converge to f as m — oo. The
main result of [8] is that the difference kernel wy,(z —y) is SCV Dapy1. (We will use the
fact, see Karlin [4, Chap. 9, Corollary 3.1], that w,,(z — y) is ECV Dayt1.)

In the second paper [5], a more general theory was pursued with regards to CV D
difference kernels, i.e., kernels K € C? which are CV D and of the form K(z,y) =k(z—vy)
for some k € C.

The results of both papers, along with numerous generalizations, may be found in
Chapters 5 and 9 of Karlin [4]. In Chapter 9 is studied the many properties of CVD
difference kernels. For example, it is shown that if k(z —y) is SCV Dypyy and k € 6(4"”),
then k(z —y) is in fact ECV Dy, 41 (see Karlin [4, Chap. 9, Theorem 9.1]). Another result
concerning difference kernels which are CV D is that the ¢, in (1.1) are necessarily all
equal (see [5, p. 258] or [4, Chap. 5, Theorem 7.1]).

This present paper is, to a large degree, a continuation and extension of [6] to the
periodic case. Motivated by work of Sattes [10], the second author considered in [6] ap-
proximations (in the uniform norm) to f € CJ0, 1] by functions of the form

o(z) = / K (2, y)h(y) dy
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where |h(y)| < 1 and K is strictly totally positive (STP). In addition, numerous related
problems were considered such as best approximating by generalized perfect splines with
at most n knots, and best approximation from

/0 K(z,y)du(y),

where dyu is a nonnegative measure. The results obtained (uniqueness and characterization)
were somewhat surprising considering the fact that the approximating subspace is not
finite dimensional (or finite parameter). The results also depended, rather crucially, on an
“orientation”. It was unclear how one might generalize these results to the periodic case,
where there seemed to be no natural “orientation”. In [2] the first author, using his results
from [1], was able to generalize the main result in [6] to the periodic case. In this paper
we review this work (Section 3) and then go on to consider various related problems.

To be more precise, in Section 3 we characterize and prove uniqueness of the best
approximation to f € C from

M= {/0 WK(.r,y)h(y)dy cJh(y)| £ 1 a e,y €[0,27]},

under the assumption that K is SCVD. If f ¢ M, then this unique best approximation

is necessarily of the form
2n

) Ei+1
Z(—l)]“/ K(z,y)dy,
=1 i
for some integer n and some & < -+ < &2y < Eony1 = & + 27, We call such functions

periodic generalized perfect splines with 2n knots. It also exhibits additional properties
(see Theorem 3.2).

In Section 4 we restrict our approximating set to a subset of periodic generalized
perfect splines with exactly 2n knots, where both n and one of the knots is fixed. We
characterize and prove the uniqueness of the best approximation to f € C\M (Theorem
4.1).

We continue this investigation in Section 5, where we consider approximation from the
set of periodic generalized perfect splines with exactly 2n knots (but none fixed, Proposition
5.1), and a related problem (Theorem 5.2). Finally, in Section 6, our approximation set is

2m
Mo ={ [ K(e.w)in(w) : 2 0}
0
We prove analogues of some of the results of Sections 3, 4 and 5.

§2. Preliminaries

In this section we present various results which will be needed and used in the subsequent
analysis. Some of these results may be found in Davydov [1]. However, since that paper
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is contained in a proceedings in Russian which is probably inaccessible to many readers,
we will also present these results with proofs. For variety, the proofs will be somewhat
different than those in [1].

An m-dimensional subspace U of continuous functions defined on an interval I is
said to be a Chebyshev (T-) space (or Haar space) if no non-trivial function vanishes at
more than m — 1 distinct points in I. If uq,...,u,, 1s any basis for this space, then it is
called a T-system. (The terms “space” and “system” are often used interchangeably.) An
equivalent definition of a T-system 1s that

v (xl"“’m ) = det{u;(z;)} "y #0

1;-+-5Tm

for every choice of distinct xy,..., 2, in I.

T-spaces have many distinctive properties. One of the more familiar is the charac-
terization (and the uniqueness) of the best approximation to continuous functions in the
uniform norm from T-spaces. Since we will deal with 27-periodic functions, we formulate
the result in this setting. We note, for the same reasons as stated in the introduction, that
a T-space in C is necessarily of odd dimension.

Theorem 2.1. Let Uzppi1 C C be a T-space of dimension 2m + 1. Let f € 6\U2m+1.
Then there exists a unique best approximation u* to f from Usy4q. u™ is characterized
by the fact that there exist 2m + 2 points 1 < + -+ < Tam42 < 1 + 27 and a 6 € {—1,1}
such that

S(-1)'(f—u)w) = |If —u*|, i=1,....2m+2.

We will generally simply say that f — u* equioscillates on 2m + 2 points.

If K is an SCVD kernel, then for every choice of y; < -+ < yomy1 < y1 + 27
(resp., 1 < -+ < Tam41 < ¥y + 27), the set of functions K(z,y1),..., K(x,y2m+1) (resp.,
K(z1,y),..., K(22m+1,y)) spans a T-space of dimension 2m + 1. Moreover it will also
be necessary that we deal with 2m sections of the kernel K, which cannot possibly be a
T-system. To this end we present the following definition and result.

Definition 2.1. Let Uy, be a 2m dimensional subspace of C. We say that Uy, 1s a quasi-
Chebyshev (QT-) space if Uy, contains a (2m — 1)-dimensional T-space and is contained
in a (2m + 1)-dimensional T-space.

Following previous notation, any basis for a QQT-space will be called a QT-system. The
next result characterizes best approximations from QQ7T-spaces. Note that there is no claim
of uniqueness of the best approximation.

Theorem 2.2. (Davydov [1]). Let Us, C C be a QT-space of dimension 2m. Let
fe 5\U2m. Then u* € Uy, is a best approximation to f from Us,, if and only if there
exist 2m points wy; < -+ < way, < wy + 27, a 6 € {—1,1}, and additional points w),,
w, . satisfying

Wom—1 < w'zm < Wy < w'z'm < wy + 27
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such that
a) dimU2m|{w1,...,w2m} <2m

b) 6(—1)(f —u*)(wi) = |f —u*|[, i=1,...,.2m—1
O(f —u)(whp,) = 6(f — u™)(wyy,) = |If —u”|.

We do allow for the possibility that w),, = wa;, = w,,.

Proof: (=). Assume u* € Uy, is a best approximation to f from Us,,. It is known (see
e. g. Rivlin [9, p. 63]) that there exist k distinct points, 1 <k <2m + 1,

< <xp <z 427
and real numbers ¢; # 0, j = 1,..., k, such that

k
(1) ZC]‘U(JJ]‘) =0, allueUm

j=1
(i6) (sgne)(f —u)as) = If —ull, j=1,....k.
Since Uj,, contains a T-space of dimension 2m — 1, it follows that

Sc(cla-" 7Ck) > 2m

and thus k € {2m,2m + 1}. As a further consequence dim Uy,
consider two cases.

} = 2m — 1. We

LTk

1) dimUly,, ... 0p) = 2m.

In this case we must have (from (i)) that £ = 2m + 1. The value S.(cy,...,Com+1) is an
even number. As such it must equal 2m, and cjcj41 < 0,7 =1,...,2m+ 1 (com42 = ¢1)
for all but one j. Assume without loss of generality that copmcamyr > 0. Let uy, ... usm

be any basis for Us,,. Solving for ¢; (from (1)), we see that we must have

U( 1,....2m >U< 1,...,2m ><0.
L1y 3 2m—1,T2m T1yeee 3 2m—1,T2m+1

Thus for some z9,, < Tom < Tam+1, Wwe have

U( 1,...,2m~ >:0.

L1y, . 3 T2m—1,T2m

Set w; = x4, =1,...,2m—1, waym = Tam, Wh,, = Tam, and wh,, = xam+1. The conditions
of the theorem hold.

2) dimUlya,,.. 2y = 2m — 1.

In this case we may assume, by a simple argument, that £ = 2m. Since S.(c1,...,cam) =
2m, the ¢;’s must alternate in sign. Set w; = z;, ¢ = 1,...,2m, and w},, = w},, = wop,.
The conditions of the theorem thus hold.
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(«<). Assume conditions (a) and (b) hold and u* is not a best approximation to f from
Us.n. Thus there exists a w € Us,, such that

|f—w* —al| < |l f —u™|,
from which it follows that
o(=1)'u(wi) >0, i=1,....2m—1,
Su(wh,y,) >0, du(wy,,) > 0.

Since Uy, is contained in a (2m + 1)-dimensional T-space, u cannot have more than 2m
distinct zeros. Thus @ has no zero in [w),,, wY, | and therefore

The function u strictly alternates in sign on the 2m points wy, ..., w2m,, where
dim U2m|{w1,...,w2m} < 2m.

We prove that this is impossible. For each w; there exists a v; in the T-space of dimension
(2m — 1) contained in Us,, which agrees with @ at {wi,...,wam}\{w;}. In addition v,
has at most 2m — 2 zeros. Thus u and v; have opposite signs at w;, and (v — v;)(w;) # 0.
Renormalizing we have constructed 2m functions z; = a;(u —v;) € Usp, satisfying z;(w;) =
0ij, 1,7 = 1,...,2m. But then

dim U2m|{w1,...,w2m} = 2m ;

which is a contradiction. H

Remark 2.1. In the above proof of the sufficiency we used the fact that Us,, is contained
in a (2m + 1)-dimensional T-space. This same result may be proven by more involved
methods, without this assumption.

Remark 2.2. If u* € Us,, is such that f — u* equioscillates at 2m + 2 points, then u*
is necessarily the unique best approximation to f from Uszp,. (This follows from the fact

that it is the unique best approximation from the (2m +1)-dimensional T-space containing
Usm.) Thus there must also exist points for which (a) and (b) hold.

QT-spaces have an additional property which we will find useful. It is the following.

Lemma 2.3. (Davydov [1]). Assume Us,, is a QT -space, and
dim Usn | (s ..o e} < 20

Then for every choice of
yr <o <yam <y +27
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satistyving w; < y;i < wiy1, ¢ = 1,...,2m (wapmy1 = wy + 27), with {wy,...,way} #
{y1,...,y2m} we have

dim Uam |y, .....ysm} = 20
Proof: Let uy,...,us,—1 be abasis for the (2m—1)-dimensional T-space Us,, —; contained
in Usy, and gy, be such that uy, ..., ug,, is a basis for Us,,. Since

dim U2m|{w1,...,w2m} < 2m 3

there exists a non-trivial v; € Us,y, of the form vy = Z?Zl a;ju; which vanishes at the {w;}.
Furthermore from the T-space property of Usn—1 we must have ag,, # 0. Since Uz, is
contained in a T-space of dimension 2m + 1, the function vy must change sign at each of
the w;, and vanish nowhere else.
Similarly if
dim U2m|{y1,...,yzm} <2m,

then there exists a non-trivial vy € Usy,, of the form vy, = 2321

the {y;}. From the T-space property of Us,,—; we must have by, # 0, and since Us,, is
contained in a T-space of dimension 2m + 1, the function vs must change sign at each of
the y;, and vanish nowhere else.

Since {wi,...,Wam} # {y1,...,Y2m}, the function bym,vi — azmve € Uszm—1 is not
identically zero. However it has at least 2m zeros (where we count zeros which are not

bju; which vanishes at

sign changes as double zeros in the sense of ’Zvc) This contradicts known properties of
T-spaces. B

Let us assume that K € C? is an SCVD kernel. From Lemma 2.3 it follows that if

I'\’ <l’1,...,.172m> :0
Yi,-- -5 Y2m

for some x1 < -+ < X9y < x1 + 27 and Yy < -+ < Yam < y1 + 27, then necessarily

K (‘wla cee ;’w2m> ?é 0
Yi,-- -y Yom
for every choice of wy < - < wyy, < wy + 27 satistying ¢; < w; < xj4q, 20 =1,...,2m
(Tam41 = x1 + 2m), with {z1,...,22m} # {w1,...,wam}, and thus is of one fixed sign

throughout this domain. Let us denote its sign by o1(x,y) € {—1,1} (to also note its
dependence on x and on y). Similarly

K( Tree 2m> £ 0

Z1y.++522m

for every choice of zy < -+ < z9,, < 21 4 27 satisfying y; < z; < Yig1, ¢ = 1,....2m
(Yam+1 = y1 + 27), with {y1,...,v2m} # {z1,...,22m}, and thus is of one fixed sign

throughout this domain. Let us denote its sign by o2(x,y) € {—1,1}. There is a relation-
ship between o; and oy which we will use and thus record in this next lemma.



Best Approrimation and CV D Kernels 9

Lemma 2.4. Assume K is an SCV D kernel, and

I’( <l’1,...,.172m> :0
Yi,-- -5 Yo2m
for some v1 < -+ < Xom < 1 + 27 and y; < -+ < Yom < y1 + 27. Let oy and o9 be as

above. Then

g1 (Xa Y)U2 (Xa Y) = —E€mEm+1

where the ¢, are as defined in Definition 1.1.

Proof: We use a simple form of Sylvester’s determinant identity (see Karlin[4, p. 3]) which
says that for 1 < -+ < 2941 < 71 + 27 and y1 < -+ < Yomy1 < Y1 + 27, we have

K <$1a---,$2m—1> K <$1,---7$2m—1,$2m,$2m+1) _
Yty Y2m—1 Yty s YP2m—12Y2m Y2m+1
K <$1,---,332m—1,372m> K <$1,---,$2m—1,$2m+1>
Yiy- -5 Y2m—1,Y2m Y1y Y2m—1,Y2m+1
K Tlyee s T2m—15T2m+1 K Tlyee s T2m—1yT2m '
Y- Y2m—1,Y2m Yi,- -5 Y2m—1,Y2m+1

I{ <$17---7$2m—1,$2m> :0

Yi,- -5 Y2m—1,Y2m

By assumption,

In addition, we have

~f L1y sy T2m—1
EmIX< ’ ’ " >>Oa

yl;--.,yzm_l
and
Em41 K (xla Ce );CZT)’L—]_,-IIZWL,l'zrn_I_l) - 0.
Y, Y2m—1,Y2m; Y2m+1
Finally,
e wl o .’1:'2 —1 .:C2 1
O'l(ny)A< ’ 3 m s m4+ >>07
Yy -5 Y2m—1,Y2m
and

- Llyeee sy 2m—1,L2
oa(x,y)K ( Ty Teme Ly em > >0,
Y1y s Y2m—1sY2m+1

which proves the lemma. H
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§3. Approximation from M

As previously, we assume that K € C?is an SCVD kernel, and set

M = {g(z) :/0 Trl'f(:v,y)h(y) dy : |h(y)| <1a.e.,yel0,2r]}.

In this section we review the main result from Davydov [2] regarding the best approx-

imation to f € C from M. To this end we introduce the following definition.

Definition 3.1. A function ¢ € M is said to be a periodic generalized perfect spline with
2n knots if:
a)n =0 and

2w
sa) == [ Koy,
0
b) n > 1 and there exist 2n points (called knots)

€1 < <o <& +27 = Eonta

such that
2n " &t )
ga) = 3 (~1) /E K(z,y)dy.
=1 ‘

This next result and the ideas behind it will be used many times. It is of central importance
in determining “orientation” of the best approximation. As such we present it as a separate
result.

Proposition 3.1. Let n > 1, and assume
2n . i1
o'(0) = (-1 [ Koy
j=1 &
is a best approximation to f € 6\/\/1 from M. Let n ¢ {&,...,€,}. Then the zero
function is a best approximation to f — ¢* from

2n
A= {ZaiK(x,fi) +bK(z,n) :a; € R, 1=1,...,2n, 6b <0},
1=1

where 6 = (=1)iT! ifn € (&,641), 1 =1,...,2n.

Remark. The above proposition states that A is contained in the tangent cone to M at
*

qg .
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Proof: Without loss of generality we assume that n € (€25,& + 27). Thus 6 = —1,
and in the definition of A we have b > 0. Assume that the zero function is not a best
approximation to f — ¢* from A. Then there exists a
2n
v(z) =Y a;K(x,&)+bK(x,n) € A
j=1
such that
If =g —vll <lf =97l
Thus for every A € (0,1] we have
If =g" = M| <[If = g"[| = Ac
where
c=f=gl=Ilf —¢g" —»ll>0.
Set 6; = %(—1)]@]'/\, A>0,small, j =1,...,2n, and 63,41 = 3bA. (Thus 2541 > 0.)
Let g(x;€&) = ¢*(x), and for 6 = (61,...,02n41) as above, set

2n—1

) Eit1+6541 n
sasg+ i) = Y (-0 [ Koy = [ Ky
j=1 §i+6; Eant+ban
N+62n41 E14+2m+6,
+/ K(z,y)dy —/ K(z,y)dy .
] n+62n41

Now for A > 0, small,

2n—1 ] Ei+1t+6i41 &i+6;
g(z: &+ 8m) —g(z:6) = D _ (1) [/ U R y)dy —/ K(:c,y)dy]
j=1

it &

&1+61 N+62n41 €on+ban
| Kewa-z [ Kapa - [ Ky
1 n 2n

2n
Z 1Y 6;K(x,&) + 260041 K (2,n) + o(8)

_AU( )+ o(A).
Since 62,41 > 0, we have ¢g(; &+ 6;n) € M. (If 63,41 < 0, this would not be true.) Thus
I =" =llf =g ON<f —g(: €+ 8n)
=[If = (9(-:€) + Av + o(A))]|
=|[f —g" — Av|[ + o(A)
<I1f — g*ll — Ae +olA).

But then for A > 0, sufficiently small, a contradiction ensues. H

We now state and reprove the main result in Davydov [2]. We present it here for com-
pleteness, and because we apply a slightly different method of proof.
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Theorem 3.2. (Davydov [2]). Assume K is an SCV D kernel, and f € C\M. There
exists a unique best approximation ¢* to f from M. ¢* is a periodic generalized perfect

spline with 2n knots and is characterized as follows.
a) If n =0, then

21
g*(x) = 6 / K(z,y)dy
0

for some 6 € {—1,1}, and there exists a 6 such that

erd(f—g")O0) = |If ="l

b) If n > 1, then

2n &1

g*(2) = 3 (~1)pH / K(z,y)dy

j=1 3
for some £ < -+ < €9, < £ 4 27 = €941, as above, and one of the following is true:

bl) f — g* equioscillates on 2n + 2 points,
b2) there exist 0 < --- < b3, < 0y + 27 such that

X (91,...,92n> _0
617"'76271

and for some 0, , 0 satisfying 03,1 < 0, < 03, < 6) <6 + 27 we have

(1) euoa(8,6)(F —g")0) = If ="l i=1.....2n -1

—en02(0,8)(f — 9")(05,) = —£r02(8,&)(f — 97)(03,.) = |If — 97| 3.1)

Proof: From the compactness of M, we have the existence of a best approximation ¢* to
f from M. We refer to Glashoff [3] where the method of proof shows that ¢* must be a
periodic generalized perfect spline (with a finite number of knots). The uniqueness follows
from a standard convexity argument, since a strict convex combination of two distinct
periodic generalized perfect splines is not a periodic generalized perfect spline.

Sufficiency. We assume ¢* satisfies (a) or (b). If (a) holds then for any ¢ € M, g # ¢*,

27

K(0,y)h(y)dy < / |K(0,y)|dy = e16¢*(0)

0

2

e16g(6) = 516/

0

and thus
1f = g*l| = e16(f — g™ )(0) <eré(f —9g)(0) < | f -4l

and so ¢* is the best approximation to f from M.

If (b) holds, and
1f =gl < Ilf = g"
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for some g(x) = foh K(z,y)h(y)dy € M, then

Zl(f —g%) ~ (f = 9)) = Zelg — ¢") < Selh — h*) < 2n (3.2)

where ¢*(z) = fOZW K(z,y)h*(y)dy. (The right most inequality in (3.2) comes from the
form of h*.) If f — ¢* equioscillates on 2n + 2 points, then

2 +2< Z((f —g*)—(f —9))

and a contradiction immediately ensues from (3.2). This proves the sufficiency of (b1).
Assume (b2) holds. Here the “orientation” comes into play. From (3.2) we must have

2n=2Z.((f —g¢*)—(f —¢)) = Sc(h — h*). From (3.1)

(_1)Z+1€n02(07£)(g_g*)(el) >07 621,7277,—1
—en02(0,8)(9 — 9")(03,) >0, —eno2(0,8)(g —g")(63,) > 0.

Since (f —¢*)—(f —g) = g* — g cannot, by (3.2), have any additional zeros, we must have

—£,02(0,&)(g — 97 )(02,) > 0,
and thus ‘
(—1)ten02(0,€)(g —g*)(0;) >0, i=1,...,2n.
Set

Eit1
uj(z) = /E K(e,y)lh(y) = W)y, §=1,....2n.

Since S.(h — h*) = 2n, the function h — h* does not identically vanish on [¢;,&;41] and
thus u; # 0. Furthermore, since ¢ € M, we have |h(y)| < |h*(y)| for all y and thus

2n
g—g = (=1)u;.
j=1
Therefore N
di = (=1)"'e,02(0,6) > (=1)u;(6;) >0, i=1,...,2n. (3.3)
j=1

Recall that

br,. .., 00,
02(0,§)K< fro 2 >>0
Yi,--,Y2n

for every choice of yy < --- < y2n <y1 + 27 satisfying & < yi < i1, 0= 1,...,2n with
{&,...,&n}t #{y1,...,y2n}. Thus

1,...,2n
02(0,5)(] <61 92 ) > 0.
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A simple matrix computation (solve for the coefficient 1 of us, in (3.3)) shows that

1

2r 2n — 1
Ry N N N SR
Sgn( © ; ¢ (615"'56]6’""6211))

1,...2n—1
U(el’ » )=det{uj(9i>}§z;l%zl.

where

Y D i#k

An additional calculation shows that

U 1,....2n—1
~ = En
e N NN
for each k = 1,...,2n. This is a contradiction and the sufficiency is proved.

Necessity. Assume g* is a periodic generalized perfect spline with n = 0 knots. Then

2T
s =5 [ Ky
0
for some 6 € {—1,1}. If there is no 6 such that

erd(f—g")O0) = |f-g"l,

then
If = Ag*[| < [If — g7

for some A € (0,1) (near 1), which implies that ¢* is not a best approximation to f from
M. This proves the necessity in the case n = 0.

Assume ¢* is a periodic generalized perfect spline with 2n (n > 1) knots. From
Proposition 3.1 the zero function is a best approximation to f — ¢* from

2n
A= {ZaiK(x,fi) +bK(z,n) :a; €R,i=1,...,2n, b >0},

=1

where 1 € (€2n, &1 + 27). This immediately implies that the zero function is a best approx-
imation to f — ¢* from the QT-space

Ugp = span{K (-, &1),..., K(-,&20)} -

Thus either (b1l) holds (i.e., at least 2n + 2 points of equioscillation) or we have exactly
2n points of equioscillation as in the statement of Theorem 2.2. It remains to prove the
explicit orientation of the sign of the equioscillations as stated in (b2). Assume that f—¢*

an 0.6 be the associated “equioscillation”

equioscillates at exactly 2n points. Let {6;}:",, 65, ,

and “additional” points.
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Let
V2n+1 = span{K(-, 51), e ,IX’(', fgn), ]{(', 77)} .

Vant1 is a (2n 4 1)-dimensional T-space. The zero function is therefore not a best approx-
imation to f — ¢* from V2,41 (see Theorem 2.1), but is a best approximation to f — ¢g*

from A. Thus if

2n

vi(z) =Y K (&) + dK (z,n)

=1

is the best approximation from Va1, then
If =g =o'l <lf = ¢l

and d < 0.

From the first condition we have
v 0)(f —g*)6:) >0 i=1,....2n—1
v*(05,)(f = 9*)(65,) >0
v*(05,)(f — ¢")(63,) > 0.
Since no v € Vany1\{0} has more than 2n zeros and v*(6}, Ju*(84 ) > 0, we must have

v*(09,)v*(8h,) > 0. Therefore v* alternates in sign on the {6;}2",. Let ( € (62,,6; + 27)
be such that v*(¢) = 0. Solving for d we obtain

2n i - {8 79\1 ..... Oon,
Yot (=1 e*(6,) K ( b 51’,...,62712 C)

d= 01,00y B20 ¢
K (&)
By definition,
sgnK <915"'762n7€> — ¢
— Sn+1
Sla"'752n777 *
and R
Or,....6;,...,05,,
sgn KK oo 2, ¢ =01(0,§)
Sla"'ﬂf?n

for each ¢« = 1,...,2n. The v*(§;) alternate in sign and d < 0. Thus
sgn(—1)v*(6;) = —en1101(6,8).
From Lemma 2.4, this implies that
sgn(—1) 1 o*(8;) = £,02(8, &)

Thus ‘
(—1)Z+15n02(0,£)(f —g")6)=|f-9", 1=1,....2n—-1

—n02(0,&)(f — g")(05,) = —€n02(0,§)(f — g")(63,) = IIf — "I



16 0. Davydov and A. Pinkus

and the theorem is proved. W

The condition |A(y)| <1 in the definition of M may be generalized to
Uy) < hy) < uly)

where 0, u € C and ¢ < u. The same results then hold where & jumps between being equal
to ¢ and to u on alternate intervals.
Consider the problem

e(a) = min{||f — ag||: g € M}.

For each o > 0 there exists a unique g, € M which attains the above minimum. Assuming
that f # ag., the characterization of ¢, is given by Theorem 3.2. How does g, vary with
a? (Since g4 is uniquely determined, it may be shown that g, continuously varies with «.)
As « increases the number of knots (and equioscillations) increases. Case (b1) of Theorem
3.2 (where the number of equioscillations is at least two more than the number of knots)
occurs exactly at the o for which the number of knots of ¢, increases.

Let @ be the smallest value for which f € aM. (a may be infinite.) For each
a € (0,a), set

2T
dale) = [ KCeayhatu)dy.

0

The function h, is a step function taking on the values +1 with 2k(a) jumps, i.e., g, has
2k(a) knots.

Proposition 3.3. On the interval (0,a), the value e(«) is a strictly decreasing function
of a. Furthermore, if 0 < < a < a, then k(B) < k(«). We have k(B) < k(«) for all
a € (B,a) if f — Bgs equioscillates on at least 2k(3) + 2 points.

Proof: Let 0 < f < a@ < @. Then M C aM and agy € aM\BM. Thus from the

uniqueness of the best approximation from a.M
e(a) < e(f).
Now assume f — 3gg equioscillates on 2m points. Then
2m < Zo((f — Bgs) — (f — 6ga)) = Ze(aga — Bgs) < Se(aha — Bhs) = Sc(aha) = 2k(a).

Since m > k(f) we obtain k(3) < k(). If f — Bgg equioscillates on at least 2k(3) + 2
points, then k(3)+1 < k(a). W
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§4. A Fixed Number of Knots with a Fixed Knot

Let K be SCVD and for n =1,2,..., set

2n . £t
Pa(6) = Z(—l)ﬁ_l/ ’ K(z,y)dy : £ =6 <6 < <o < onp1 =& + 27

j=1 &

Note the orientation of sign at £ = &. Let f € C. In this section we assume that the
best approximation to f from M is not in P; (¢). We characterize the (unique) best
approximation to f from P} (£). (Note that this set is not convex.) It follows from a
standard compactness argument that a best approximation exists. The following theorem
totally characterizes this best approximation.

Theorem 4.1. Under the above assumptions there exists a unique best approximation
gt to f from P} (€). gT has the form

2n &1

g*(z) =:§{jc—1>f+1u/' K(z,y)dy.,

=1 &

where € = £ < €3 < -++ < €95 < Egna1 = & + 27, de., gt € int Py (€). It is uniquely
characterized by the fact that f — g7 equioscillates on exactly 2n points.

Remark. f — g7 cannot possibly equioscillate on 2n points which satisfy the conditions
(b2) of Theorem 3.2, nor at more than 2n points. For it would then be the best approxi-
mation to f from M. Note however that no claim is made as to any determinant vanishing
which would connect the points of equioscillation and the knots. That is, there is no “ori-
entation” involved in this result. (We could also define Py (£) (which is independent of
¢ and simply contains one function). The same result then holds.) In a totally parallel
fashion we can of course define P, (£) and obtain the analogous result.

The proof of Theorem 4.1 is technically cumbersome. We divide the proof into two
main parts. In the first part we show that if g% (a best approximation to f from P;rn(f))
is contained in int 732-'7,‘(5), then f — g7 equioscillates on 2n points and that this latter
condition uniquely characterizes the best approximation from 732+n(§) In the second part
we prove that a best approximation must in fact be contained in int 732-2(5)

Proposition 4.2. Assume that g7, a best approximation to f from 732-','”(6), 1s contained
in int 772-',;(5). Then f — g% equioscillates on exactly 2n points. Furthermore this latter
condition uniquely characterizes the best approximation to f from 7)2+n,(§)

Proof: For each & = (&1,...,&m), £ =6 <& <o <&y < Eong1 = &1 + 27, set

see) = [ Key)helw)dy

0
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where

h&'(y):(_l)]+17 §]§y<£]+17]:1752n
Obviously Sc(he) < 2n. Moreover a simple argument (see e. g. Pinkus [7, p. 140]) shows
that for any €' and &2 | as above, we have

Now assume that ¢* is a best approximation to f from 73;’”(6), and that f — ¢
equioscillates on 2n points. Let gg1 € P (6), ger # g, satisfy

If—gerll <IIf =gl
Then
20 < Z((f —g") = (F —g¢1)) = Ze(ger —g™)

(where we count nonnodal zeros twice). Set

gt (z) = / Kz, y)h* (y)dy

From the SCV D property of K we have

Ze(ger —97) < Se(hgr —ht) <2n -2,

which is a contradiction. Thus g™ is necessarily the unique best approximation to f from

Palu(€)-

Assume g7 € int P;’n(f) The perturbation argument given in Proposition 3.1 (without
the n and without perturbing £ = ;) proves that the zero function is necessarily a best
approximation to f — ¢T from

span{ K (-,&2),..., K(+, &)} -

These 2n — 1 functions form a T-system and thus f — g™ must equioscillate on at least 2n
points. Since ¢ is not the best approximation to f from M, f — g7 cannot equioscillate
at more than 2n points. This proves the proposition. B

It is in proving that any best approximation is necessarily in int P, (¢) that we encounter
cumbersome technical details. To this end we first prove the result for EC'V D3 kernels.
This allows us to consider first derivatives. We then show how to apply a smoothing
procedure, using the de la Vallée Poussin means, to obtain the final result.
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Proposition 4.3. Assume that K is SCV D and ECV D3, and that the best approxima-
tion to f from M is not in P;n(f) If gt is a best approximation to f from P;n(f), then
gt cint Py (€).

Proof: We assume gt ¢ int P,/ (£). Thus

o) = Yot [ Ry,

j=1 n;

where 71 < m2 < --- < ok < N2k+1 = N1 + 27, and k£ < n — 1. For convenience we set
ht(y) = (=1)*! fory € (nj,mj41), 7 = 1,...,2k. Note that £ may or may not be included
among the {n; 3i1 Furthermore, if € is included among the {nj}?il, it may equal an 7,
for s odd or s even. (These are different because of the orientation of the jump. We will
take s = 1 or s = 2). There are various cases which we will consider.

Case 1: £ ¢ {n1,...,n2k }-

We first claim that the zero function is a best approximation to f — g7 from

2k
A= {Z a;K(x,n;)+bK(z,€) 1a; € R,0b <0},

=1

where o = sgn h™ ().
This result is a direct consequence of Proposition 3.1. The knot ¢ here plays the role
of i in Proposition 3.1. Note that g(z;n + 8;¢) € Py (£), where

2k 41+ 41

, 3
dlasn +8:¢) = > (-1 | Koy —o [ Ky

j=1 nj+6; -

with - =&, {4 =8+ baky1 if o= -1, and {- =€ — bap41, 4 = if o = 1.

We now apply the method of proof of Theorem 3.2. Exactly the argument found
therein implies that ¢T is a best approximation to f from M, which is a contradiction.
We will present much of the argument here, as we shall not do so in the other cases.

Let
2k

v(x) = Z c¢ilK(x,m;)+ dK(z,£)

=1

be the best approximation to f — g1 from the T-space

span{f&’(-, 771)7 s aI{('a 772/6)7 ]{('a {:)}

Therefore f — g7 — v equioscillates on at least 2k 4+ 2 points. If od < 0 then v € A. Thus
v =0 and f — g7 equioscillates on at least 2k + 2 points. But by Theorem 3.2, this implies
that ¢t is a best approximation to f from M, a contradiction. Thus od > 0.
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The zero function is a best approximation to f — ¢* from the QT-space

span{K(-, 771)’ B al{('a 772]6)} :

This, together with the fact that g7 is not a best approximation to f from M, implies
that f — g7 exhibits exactly 2k points of equioscillation as in the statement of Theorem
2.2. We now put this fact together with od > 0 (word for word as in the proof of Theorem
3.2) to prove that g7 satisfies condition (b2) of Theorem 3.2, and thus once again ¢ is a
best approximation to f from M. This contradiction implies that ¢ is not of the above
form.

Case 2: £ € {ny,..., 2k} and k < n — 2.

We first claim that the zero function is a best approximation to f — g7 from

2k
A={)_aiK(z,n)+bK(z,¢) : a; € R,6b < 0},

=1

where § = sgn ht((), and ( is an arbitrary knot.

We prove this using the argument to be found in Proposition 3.1. We can perturb
all the knots exactly as in the proof of Proposition 3.1, and ¢g(x;n + 8;() will not leave
the class P, (£). We consider g(z;m + 8;¢) as having the 2k + 4 < 2n knots n; + &;,
i=1,...,2k, (, (4 62541, £ and £ (i.e., two knots at the point £!).

We now apply the exact same argument as found in Case 1 (and in the proof of The-
orem 3.2) which proves that ¢ is a best approximation to f from M. This contradiction
again implies that g™ is not of the above form.

Case 3: £ =ny andk=n—1.

A perturbation argument, as in Cases 1 or 2 (or as in Proposition 3.1), implies that the
zero function is a best approximation to f — ¢+ from

span{K(-, 771)7 s aI(('a 7]2n—2)} .
From Theorem 2.2 there exist points 61 < --- < #,_2 < 81 + 27 for which
01,...,00,_
K( P2 2):0, (4.1)
M, N2n—2
and for some 6, ,, 05 _, satisfying 6,5 < 6}, 5 < by,_o <65, _, <0 + 27, we have

(—1)'en102(8,m)(f =g )0 = If 9", i=1,....2n =3
en-102(0,m)(f — 97 )03, _3) = en—102(0,m)(f — g7 )(65,_5) = lf — g™
(If the sign was reversed, then g™ would be a best approximation to f from M.)
As such there also exist {t{};"? and {t!}:"]? satisfying t} < 6; < t! < ti,, i =
yeey2n =2 (th,_; =t} + 27), for which

(=1)'en—102(0,0)(f = g")(1}) = (=1)'cucro2(8,m)(f — ¢ 1)) = |If — g7l

1
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and
(F=gD)@ < lf =g"ll, =€ tiy), i=1....2n-2.
In each interval (¢,t,,),7=1,...,2n — 2, we choose a point 7; € (t{,t},,), and consider
the function
YsM2y- -5 M2n—2
Since u is periodic, it must have another zero ( apart from the 73,...,n2,—2 (the case of

a double zero at one of these points can be avoided by a small perturbation of 7). From
(4.1) and Lemma 2.4, we must have ( # n;. For convenience, we assume that { € (71, 72).
We may also keep ¢ = n; fixed, perturb ns2,...,92,—2, and add two knots near (. It
then follows (exactly as in Proposition 3.1) that the zero function is a best approximation
to f — ¢T from
2n—2

A:{Z a;K(z,n;)+bK(x,() :a; € R,b<0}.

1=2

We claim that the zero function is not a best approximation to f — g7 from

span{ K (-, (), K(-,n2),..., K(-,n2n—2)} .

This follows from Theorem 2.2. If the zero function is a best approximation there exist
values wy < -+ < wap—9 < wy + 27 which are essentially points of equioscillation, and for

which
K ( Wiye..yWonp—2 > —0.
Ca N2y ..y N2n-2
But by the choice of the 7; and equioscillation pattern of f—g™, the {wz}fgﬁ must strictly

interlace the {7;};"7%. A contradiction ensues from

]—{< TlyeeeyT2n—2 > :0’
Ca7727"'5n2n—2
and Lemma 2.4.

As such there exists a

2n—2

pe) = dE (2.0 + Y ek (a,m)

for which
If =gt =pll<If =g,

and thus ‘
(=1)'en_102(0,m)p(6;) >0, i=1,...,2n— 2.

If p € A, then we contradict the fact that the zero function is a best approximation to

f—gT from A.
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Solving for d we see that

—en—102(60,m)K (92""’92"_2>

N2y sN2n—2

I{( 01,...,02n_2 )
CyM25msM2n—2

Oy,...,00,_
sgnK<2’ e 2)=6n—1,

N2y---5MN2n-2

sgnd = sgn

Now

(the signs are the same if we delete any 6; rather than ;) and

. 61,...,92n_2 >
sgn K =05(0,7m).
& <Can2w"7n2n—2 2( n)

This implies that d < 0 and thus p € A, which is a contradiction. ¢ is not of the above
form.

Case 4: £ = and k=n—1.
We assume that ¢gT has the form

n—2 i1

@)= 3 (1 / K (e, y)dy.

j=1 nj

with £ = ny. We are now limited in our perturbation. (The two extra knots must be used
to alter the orientation at £.) It is here that we make use of the ECV D3 property of K.
We first claim that the zero function is a best approximation to f — ¢* from

2n—2
A={ Z a; K(x,n;) + bK;(;v,ng) ca; € R,b>0}.

=1

The proof of this fact parallels the proof of Proposition 3.1. Assume that the zero
function is not a best approximation to f — ¢7 from A. There then exists a

2n—2

v(z) = Z a; K (z,n;) + 0K, (2,n2) € A

=1
such that
If —g™ —vl <If = g™l
Thus for every A € [0,1] we have
If =g =Ml < NIf = gFl = Ac

where
c=|lf =gt =Ilf —g" —vl|>0.
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Set ¢; = %(—1)jaj)\, A>0,small, j =1,...,2n — 2, d3,—1 = 61, and 65 = /bA/2,
8 = 63 + 8. Let g(z;m) = g7 (), and for § = (61,...,62n—2,0h) as above, set

2n—2

gen+8) =Y (~1)* /

j=3 nj+6;

7)2—5l2

K(z,y)dy + / K(z,y)dy
n1+61

M2 no+64 n3+63
—/ f‘f(fv,y)der/ K(z,y)dy —/ K(z,y)dy.
n

2—6, N2 PR

Nj+1+8+1

Now for A > 0, small,

2n—2

‘ Mi+1+6 41 ni+6;
g(z;in+6) —g(z;m) = Y (—1)'H [/ K(z,y)dy — / f&"(:v,y)dy]
n

n1+61 n3+63
—/ K(I,y)dy—/ K(z,y)dy
n

1 UE]

no+6Y N2
+ 2/ K(z,y)dy — 2/ K(z,y)dy
n

2 n2—64

2 [t n2+64
=2 (1) / K(z,y)dy + 2 / K(z,y)dy

n; n2+6,

112+ 64 ~1]2
/ K(z,y)dy — / K(z,y)dy

N2 N2 —61,

i#2

+2

2n—2

= (2 ) (176K (x,n;) + 0(8) | + [2(8,)° Ky, 12) + 0((83))]

i=1

=Av(x) 4 o(\).

If b = 0, then 65 = 0 and 65 = 6, so that g(-;n 4+ 6) € Pan—a C Py (£). If b > 0, then
6h,64 > 0 for A > 0 sufficiently small, and g(-;n + &) € P, (¢). Thus

If =gl =If = gCsmll < [If — g(sm + 8)]
=[lf = (g(sm) + v+ o(A))]|
=[f = g% = Aol +o(N)
<If = g7 = Aet o).
But then for A > 0, sufficiently small, a contradiction ensues.

We may now apply the argument found in the proof of Case 1 and in Theorem 3.2.
Two things which should be noted are that

Span{K(-, 771)7 s aI{('a 7727&—2)) I{;(a T]2)}



24 0. Davydov and A. Pinkus

is a T-space, and the determinant

K( 01,...,02n_2,C >
M15M25 02,735 45 - - s N2n—2 )
for any ¢ € (63,—2,0; + 27) is of sign €,. For these two properties to hold we need the

ECV D3 property. B

We have proved Theorem 4.1 in the case where K is ECV D3. It remains to remove this
extraneous restriction.

Proposition 4.4. Assume that K is SCV D, and that the best approximation to f from
M is not in P (€). If g% is a best approximation to f from Py (£), then ¢t € int Py (€).

Proof: We recall that the de la Vallée Poussin kernel

o (t) = ﬁ in: <m2;ny> eivt

m v=—m
is ECV Dgyy41. In addition for each function f € 6, the transformation
1

T o

Vo) = 5= [ "ol = 9)f(y) dy

defines the de la Vallée Poussin means (or V-means) of f. This V,,, is a trigonometric
polynomial of degree at most m, and uniformly converges to f as m — oo.

For K, which is SCV D, let

Ky (z,y) = #/0 7’/0 me(x — ) K(t, 8)wm(y — s)dtds.

It follows from the basic composition formula (see Karlin [4, p. 17]) that K, is ECV Dy 4.
Furthermore, K, converges uniformly to K as m — oo.

Set
2n ‘ &1
PF.(&m) = Z(—l)”l/ Ko (x,y)dy
=1 &

Let f be as above. It may be shown that for m sufficiently large, the best approximation
to f from P (¢;m), which we will denote by ¢g¥(+;m), is not the best approximation
to f from the associated M,,. As such it follows from Propositions 4.2 and 4.3 that
gt(-;m) € int Py (€;m), it is unique, and f — g+ (-;m) equioscillates on exactly 2n points.
Let m — oo. Then g% (-;m) converges uniformly to some g+ € P (¢). While it is possible
that in the limit ¢* ¢ int P;rn(ﬁ), it nevertheless follows that f — g% exhibits at least
2n points of equioscillation. If ¢ ¢ int Py (¢) (or f — ¢gF exhibits more than 2n points
of equioscillation), then ¢g* is the best approximation to f from M. This contradiction
implies that ¢* € int 73;'”(5) From Proposition 4.2 g7 is the unique best approximation
to f from Py (¢). W

Propositions 4.2, 4.3, and 4.4 together prove Theorem 4.1.
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§5. A Fixed Number of Knots

The best approximation from the set P, (¢) (P;,(£)) is unique and may be easily char-
acterized. Furthermore, if the best approximation is not a best approximation from M,
then this characterization is simple and has no “orientation” component.
Forn=1,2,..., set
Pan =P
3
That is, P, is the set of Periodic Generalized Perfect Splines with at most 2n knots. For

n =0,
2m
Po = {:I:/ K(:U,y)dy} )
0

Is the best approximation to f € C from Psn unique and can it be easily character-
ized? The answer to both questions is no. We present a necessary condition for a best
approximation from Ps, (stronger than Theorem 4.1), but also show that this condition
is not sufficient. Furthermore we construct a function with many best approximations
from Pa,. (Note that Pay, is compact, and thus there always exists a best approximation.)
In what follows we will take n > 1. The case Py is not at all difficult, but is somewhat
different.

Proposition 5.1. Let f € C and assume that the best approximation to f from M is
not in Pq,. If ¢g* is a best approximation to f from Py, then

2n - S+
o) = Y- [T K dy
=1 L
for some £ < -+ < &3y < Eong1 = &1 + 27, Le., ¢° € int Py, and there exist 6 < -+ <

02, < 01 4+ 27 such that
x <91,...,92n> _0
617"'76271

and for some 0},,, 0 satisfying 03,1 < 6}, < 6, < 6, < 6, + 27 we have

(—1)'eno2(0,6)(f —g*)0:) = |f—g*ll, i=1,....2n—1
en02(0,€)(f — 9" )(6h,) = €n02(0,€)(f — g*)(65,) = |If — g*|-

Proof: It follows from Theorem 4.1 that ¢* € int P2, (and that f — ¢* exhibits exactly
2n points of equioscillation). The perturbation technique found in Proposition 3.1 implies
that the zero function is a best approximation to f — ¢* from

span{ K (-, &1),..., K(-,&2n)} -

Since this is a QT-space of dimension 2n, and ¢* is not the best approximation to f from
M, the remaining statement of the theorem follows. (See also the proof of Case 3 in
Proposition 4.3.) W
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The necessary conditions of Proposition 5.1 are not, in general, sufficient and the best
approximation from Ps,, is not necessarily unique. We construct an example which exhibits
these traits.

Let k € C, k > 0, be such that K(z,y) = k(z —y) is SCVD. (In this case ¢, = 1 for
all n.) For each o € [0, ), set

| . oy
han(y) =(=1)7, a+%ﬁy<a+y

j=0,1,...,2n—1. Let
2
ga(2) =/ k(z — y)ha.n(y)dy .
0

Since go(z + 7) = —ga(x) there exists a # € [0, 7) such that g, alternately attains
its norm at the 2n points 4+ a + %r, i=0,1,...,2n — 1. (We can and will assume that
Jo attains its norm only at these 2n points.)

It is a known fact, see Pinkus [7, p. 174], that each ¢, is a function of minimum norm
in Ps,. Thus each ¢, is a best approximation to f = 0 from P,,, and uniqueness does not

hold.

Note that from the necessary conditions of Proposition 5.1, we have that

T (2n—1)mw
O e ¢
K (ﬂﬂ " b " )=0

0.= (2n—1)mw

Yt o

and (since ¢, = 1 for all n)
s i .
ga(lﬁ—}—a%—;):(—l) o2 (B)||gall s 1=0,...,2n—1

where the o2(f3) is the sign of the appropriate determinant.
Consider go which equioscillates at 8+ =, 7 = 0,1,...,2n — 1. For any f such that
fB+E)=0,i=0,1,...,2n — 1, and

1.f = goll = 9ol

we have the necessary conditions of Proposition 5.1 holding. Consider g, for any a € (0, 7).

It is not difficult to see that we may construct f € C, with f(B+ %r) =0,:=0,1,...,2n—1,
and further satisfying
If = gall <llgall = ligoll = Ilf = goll -

This shows that the necessary condition of Proposition 5.1 is not sufficient.

We now consider a different problem connected with Ps,. For f € C , set
Eyn(a) =min{[|f —ag : g € Pan}.

(Compare this value with the e(a) of Section 3.) We prove the following result.
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Theorem 5.2. There exists an a* € [0,00) with the following properties:
1) On the interval (0, a*] the value Ey,(a) is strictly decreasing and Ean(a) = e(a).
2) On the interval (a*,00) the value Esp,(a) is strictly increasing and Eqpn(a) > e(a).
3) For o = a* there exists a unique g4+ € Pay, which attains the minimum in the above.
4) go~ is uniquely characterized by the property that f — a*g.~ equioscillates on at least
2n + 2 points.

Proof: For each «, let g4 € P2, be such that

Ean(a) = ||f — agall -

We know from the results of this section that the g, is not necessarily uniquely defined.

1) From Proposition 3.3 it follows that if ag, is the best approximation to f from aM,
ie., Eyp(a) = e(a), then for all § < a the function fgg is also the best approximation to
f from M. Thus Fs,(a) = e(a) on some interval (0, a*]. Now a* < oco. To see this note
that e(a) is a non-increasing function while, since

i >0
gglplgln 9]l )
it follows that Ez,(a) — o0 as a — o0.

2) This is the more technically difficult proof in this theorem. We prove it by a perturbation
argument.
Let a > o*. From Proposition 5.1, we have that g, (which is not necessarily uniquely

defined) has the form
n - Si+1
o) = (-1 [ Kla,)dy

j=1 &

forsome &y < -+ < €ap < Eant1 = E1+27. Furthermore there exist 6 < -+ - < 6y, < 61427

such that ; .
K( Tyoons 2n> _0
61? s a£2n
and for some 65, 65, satistying 02n—1 < 6}, < b3, < 64, < 61 + 27 we have

(=1)eno2(0,6)(f —ga)() = |f —gall, i=1,...,2n—1
en02(0,€)(f — 9a)(03,) = €n02(0,€)(f — 9a)(05,) = || — gall -

We first note that the functions

{I{(" 61)’ s ’I{(" 52")’ g&(')}

form a T-system of dimension 2n + 1. In addition, a simple calculation shows that if
we evaluate these functions at 2n + 1 consecutive points, then the sign of the associated
determinant is —e,41.
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Since f — ag, equioscillates on exactly 2n points, there exists a

Z z,§j) + dga(z)

such that
If = alga +0)|| < |If —agal-

Thus for every A € [0, 1]

If = alga + A0)| < |If = agal = Ac,

where ¢ = || f — agal|l — || f — a(ga +v)]|.
From the above it follows that

(—1)'eno2(8,€)0(6;) >0,  i=1,...,2n.

These inequalities (together with the sign of the associated determinant of the (2n 4 1)-

dimensional T—system) imply that d < 0, as was the case in the proof of Theorem 3.2.
Let §; = 2(—=1)a;\, j =1,...,2n, d2n41 = 61, and

2n

, §i+1+6i41
g(z;6+6)=> (-1’ / K(z,y)dy.
=1 §i+6;
From Proposition 3.1, we have that
g(z; €+ 6) — galz _)\Za]]x +o()\).

Thus
(L4 Ad)g(z;€ +8) — ga(z) = (1 + Ad)(g(2; € + 8) — ga(2)) + Adga(z) = Av(z) + o(A).
Set ax = a1l 4+ Ad). Since d < 0 we have a) < a. Now
Blax) < [If — arg(:€+ )l = |If — alga + Ao) +o(V)]

< 1f = alga + o)l + () < B(a) = Ac + o(A).
For A > 0, sufficiently small, Ac — o(\) > 0 and thus E(ay) < E(«a). This implies that

E(a) is strictly increasing on (a*, 00).

3) and 4). Let am, be the best approximation to f from aM, i.e.,

e(a) = |[f —ama],
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as in Proposition 3.3. For a < a* this m, and the g, which appears in Ey,(«) are identical.
However for o« > a* this m, is not in Py, i.e., it has more than 2n knots, and f — am,
exhibits at least 2n + 2 points of equioscillation. As such, from continuity considerations
(limajax Ma = Mar = Gar ), Jor € P2n and f — a®ge~ exhibits at least 2n 4+ 2 points of
equioscillation.

We claim that for any g € P2y, and a > 0, ag # a* g+, we have

|f = a*gar || < |If —ag].
Assume not. Then
42 < Z((f — a*gar) = (f — ag)) = Ze(ag — a*gar ) < Se(ah — a*hoe) < 2n,

which is a contradiction. W

§6. Nonnegative Measures

Let B denote the set of finite Borel measures on [0, 27), and set

Mo = {g(z) = / " K(e.y)du(y) : p € B> 0)

where by ¢ > 0 we mean that p is a nonnegative measure. In addition, we set

Q= {ZaiK(l’,fi): a; > 0,6 < <§, S&—I—Zw},

=1

and for any £ € [0,27)

Qn(€) = {ZaiK(:p,fi) €Q,: & = 5} .
i=1
It will not suffice, in this section, to only assume that K 1s SCV D. We need slightly
more. We assume throughout this section that K € C? is continuously differentiable in y,
and for each positive integer m there exists an ¢, € {—1,1} such that

(T, .. Tom—
emI«;< Loy iam 1>>0
Y1y s Y2m—1

for all 21 < -+ < Zom—1 < 21 + 27 and y; < --- < Yom—1 < Y1 + 27, where at most
two consecutive y;’s are permitted to be equal. If y; = y;41, we replace column j + 1 by
{0K (xi,y;)/0y 12"

We will prove three main results, paralleling those obtained for M, P,,, and P; ().
We characterize the unique best approximation to f € C from M. We give necessary
(but not sufficient) conditions for best approximations to f from Q,,, and we characterize
the unique best approximation to f from Q,(£). Note that M., Q,, Q,({) are existence
sets. This can be shown in an analogous way to the proof of Lemma 5.2 in Pinkus [6].

An essential tool in proving these results is the following perturbation result.
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Proposition 6.1. Let n > 1, and g*(z) = Y, a,K(z,&;) be a best approximation to

fe C from My, where a; > 0,1 =1,....,n,and & < --- < &, < & + 2. Then for any
n ¢ {&,..., &}, the zero function is a best approximation to f — ¢g* from

~ 0K (z,&; ) ,
_A:{Zbif((x,.fi)-l-ci%—I—d]x"(:ﬂ,n): bi,ciER,z:l,...,n,dEO}.
=1

Proof: Assume not. Let

“ 0K (z,¢&; .
‘U(.‘l?) = Z bil{(‘ra 61) + CZ% + dK (.I, 77) )
i=1

d > 0, satisty
If=g" —vl <lf =97l
Then for each A € [0,1]
If = g% = ol <|[f — g™l = Ae,
where ¢ = |f = *l| - IIf — " — ol
For A > 0, small, we set

n

ga(z) =Y (a; + \bi)K (2, & + 6;) + AdK (x,n)

=1
where 6; = a,-j—c)ibi' Since a; > 0, we have §; ~ A for all : = 1,...,n, i.e., they have the
same order as A | 0. Now
o) = g"(2) = 3 (@i + Ab)K (2,6 +60) + A (2.0) = 3 i (2, 61)
i=1 i=1
i=1 i=1

1)

Y bE (e, 6+ AN e [K(x’& u 6;)‘ - K(I’&)} + MK (z,7)
i=1 i=1 !

=v(z) + o(A).
Since g* is a best approximation to f from M,
1F ="l < 1 = gall = I = (g + Ao+ o)) < [If — g — Aol] + o(3)
<f = g%l = Ac+o(A).
For A > 0, small, A\¢c — o(\) > 0, and a contradiction ensues. l
We will need the following analogue of Lemmas 2.3 and 2.4. We present this result without

proof as it is a variant on these results. However it does need and use the previously
assumed “extended” SCV D property of K.
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Lemma 6.2. Let 6, <"'<92n<92n+1:91 —|—27T, andfl <"'<§n<§n+1={"1+2ﬂ'.
Assume 4 4
K( L ):0.
glagla"'agnafn
Then
a) for alln; € (&,€i41),i=1,...,n,

. O1,...,02, >
02(0,8)K >0
2( 6) (6177]1)"'a§n5nn

for some 04(0,€) € {—1,1}.
b) for every choice of (; < -+ < (an < (1 + 27 satisfying 6; < (; < 641,01 =1,...,2n,
{61,...,60,} {1, ..., Cant,

{ Cl,...,C2n
0'1(0,6)] (gl’fl,...,fna§n> >0

for some 04(0,€) € {—1,1}
c) 01(0,§)02(6,§) =

We can now state and prove the theorem concerning best approximation from M.

—En€n+1.

Theorem 6.3. Assume K is as above, and [ € G\Moo There exists a unique best
approximation ¢* to f from M. Either g* = 0 or for some n > 1, ¢* has the form

n

g*(x) = Z a; K(x,&)

=1

where the a; > 0, =1,...,n,and §§ < --- < &, < & + 27, ¢* is uniquely characterized
as follows.
a) g* = 0 if and only if there exists a 6 such that

F(0) = =l fl-
b) If n > 1, then one of the following holds:

bl) f — g* equioscillates on 2n + 2 points,
b2) there exist 0 < -+ < b2, < 01 + 27 such that

O1,...,60, )
K =0
(515517"'5571757&

and for some 04,,, 05, satistying 62,1 < 65, < 62, < 605, < 01 + 27 we have

(=) enoa(0,6)(f —g")O:) = ||f —¢*||, i=1,....2n—1

—enoa(8.6)(F — ")) = —enoa(8.6)(F — O = If =g OV
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Proof: We refer the reader to Lemmas 5.2-5.5 of Pinkus [6] for a proof of the fact that
any best approximation to f € C\ M from M, is necessarily of the form ¢* =0 or

7

() =) aik(z,&)

=1
where the a; > 0,:=1,...,n,and {; < -+ < &, < & + 2m. The necessity, sufficiency and
uniqueness of these conditions in the case ¢* = 0 is easily checked and is left to the reader.

Sufficiency and Uniqueness. Assume ||f —g| < || f — ¢*| for some g € M, of the form

o(x) = / " K (e, y)duly)

for some p € B, p > 0. Set

n 2m
o0 =Y ak g = [ Ko
i=1 0
(ie., du* = 3" a;6¢;). Thus

Z((f—g") = (f = 9) = Zelg — ¢") < Selp — p*).

From the form of u — p*, we know that S.(u — p*) < 2n. If (bl) holds, and f — ¢*
equioscillates on 2n 4 2 points, then

m+2<Z((f—g*) = (f—9))

and a contradiction ensues.

Assume (b2) holds. Then

~

2n=12Z(9—9") = Se(pp—p*).

Now
2n

(o=@ = [ K@l = 1)) = Y ciute)

0 i=1

where ug;_1(z) = K(2,&), i =1,...,n, and

Eiy1— .

wle) = [ Kaaduty). =
&+

Note that ¢o; = 1, ¢« = 1,...,n. Since S.(u — pu*) = 2n, none of the u; (ug;) vanish

identically, and the {u;}?", are a QT-system. From (6.1) we have

(=1)He,02(0,€)(g — g*)(8;) >0, i=1,...,.2n—1

—£002(0,€)(9 — 9")(03,) = 0, — €,02(0,&)(g — ¢*)(65,) = 0. (6.2)
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Since the {u;}?", are a QT-system, we also have

—en02(60,€)(g — ¢ )(62,) > 0.

Therefore 4
(=1 eno2(8,€)(9 — ¢")(0:) >0, i=1,....2n. (6.3)

Now

1 §2— (é1+2m)— 9 92
g T A O L AR
<91, ) &1+ n+ flanla---agnann /~L(77 ) M(nl)

and thus 5
. 2n
7] ’ 0.
72(0,8)U <91,...,92n> -

As such (¢ — ¢*)(0;) # 0 for some ¢ € {1,...,2n}. Solving for ¢, = 1 in the equations
(6.3) we obtain

g — gDk ()
U (o)
A calculation similar to that done above shows that
1,....2n =1
sgnU (91,...,§k,...,92n) -
for all ¥ = 1,...,2n. The right-hand-side of the above equation therefore has sign —1.
This is a contradiction and proves the sufficiency and the uniqueness.

]—:CZn:

Necessity. From Proposition 6.1, the zero function is a best approximation to f —¢* from

{Zb[x %—I—dh(r n): bi,ciER,izl,...,n,dZO}.
Y

This immediately implies that the zero function is a best approximation to f — ¢*
from the QT-space

%] 0 n
o = spun{ K600, 0K, R D)),

Thus either (b1l) holds (i.e., at least 2n + 2 points of equioscillation) or we have exactly
2n points of equioscillation as in the statement of Theorem 2.2. The proof of the explicit
orientation of the sign of the equioscillations as stated in (b2) follows the proof of the
analogous result in Theorem 3.2. W

Recall that
Q, = {Z a; K(x,&): a; > 0} .
=1

We now prove the analogue of Proposition 5.1 for Q.
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Proposition 6.4. Let f € C and assume that the best approximation to f from M is
not in Q,. If ¢* is a best approximation to f from Q, then

7

g*(x) = Z a; K(x,&;)

=1

for some a; > 0,v=1,...,n,and §; < --- < & < & + 2w, 1e, g% € int @, and there
exist 01 < --- < by, < 61 + 27 such that

. O1,...,02, )
K =0
(617617"' 7§n7§n
and for some 0},,, 85, satisfying 6,1 < 6}, < 63, <0y, < 6 + 27 we have
(—1)'eno2(8,8)(f —g")(0i) = IIf —g7Il, i=1,....2n-1
en02(0,8)(f — g")(63,) = €n02(6,§)(f — g")(03,) = |If — g"I|-

Proof: The proof is an immediate consequence of Proposition 6.1, and the method of
proof in Theorem 6.3. If

g*(x) = Z a; K(x,&;)

=1

with & < n, then Proposition 6.1 holds since the perturbed ¢ € Q41 C Q,. We
then apply the method of proof of necessity in Theorem 6.3 to prove that ¢* is a best
approximation to f from M. From this contradiction we obtain k& = n.

We now apply the proof of Proposition 6.1 where we set d = 0. In this case gx € Q,,
so the perturbation is admissible. It follows that the zero function is a best approximation
to f — ¢* from the 2n dimensional QT-space

0K (- 0K (-, &,
L

From Theorems 2.2 and 6.3, and since ¢* is not a best approximation to f from M, we
see that the desired property must hold. H

As in the case of Proposition 5.1 these necessary conditions are not, in general, sufficient.
In addition, the best approximation from @, is not necessarily unique. We mention that
for K(z,y) = k(z — y) satisfying the “extended” SCVD properties, there exists a non-zero

constant ¢ such that
2m

CZ k(z — %)

=1

is a best approximation to f(z) =1 from Qa,,,. But then any translate of this function is
also a best approximation, and so there is no uniqueness. Paralleling the analysis in Section
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5, one can use this example to construct an f € C for which the necessary conditions of
Proposition 6.4 are not sufficient.
The analogue of Theorem 4.1 for

Qn(§) = {ZaiK(iﬂ,fi) €EQn: & = f}

=1
is the following result.

Proposition 6.5. Assume that the unique best approximation to f € C from M is not
in Q,(€). Then there exists a unique best approximation g© to f from Q,(¢). ¢g© has the

form
n

g+(3:) = Z a; K(x,&),

=1
where a; > 0,i=1,...,n,and £ =& < - < &, < & + 2w, ie, g7 € int Q,(&). It is
uniquely characterized by the fact that f — ¢© equioscillates on 2n points.

Proof: Let

n

gt (2) =) aiK(z,&) € Qu(€)

=1

and assume f — g7 equioscillates on 2n points. Let g # ¢,

g(@) =Y biK(e.m) € Qal€).

If
1f =gl <IIf =gl
then
2 < Z((f—g") = (f —9) = Z(g — g7)
Now o
(9= 9")() = 3 ek (2,G)

where m < 2n — 1. (Don’t double count the £;.) As such g — ¢t is contained in a T-space
of dimension 2n — 1, but has at least 2n zeros, with nonnodal zeros being counted twice.
This is a contradiction. Thus g% is the unique best approximation to f from Q,(¢).
Now assume that ¢ is a best approximation to f from Q,(¢). To prove that g+
satisfies the desired conditions, we apply the method used in the proof of Theorem 4.1.
If g7 € int Q, (&), then the zero function is necessarily a best approximation to f — g+

from
OK (. 61) I (-6,)

span{K (-, &), K(-, &), T, oL K (46, T} 7
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which is a (2n —1)-dimensional T-space. Hence f —g* exhibits 2n points of equioscillation.

Assume g7 ¢ int Q,,(¢). Thus

o (x) = Y aik(am).

=1

where a; > 0,0 =1,....k, ;1 < -+ < <1 + 27 and k < n. We consider three cases,
paralleling the first three cases of Proposition 4.3.

Case 1: £ ¢ {n1,....,nk}-

It can be shown exactly as in the proof of Proposition 6.1, that the zero function is a best
approximation to f — ¢* from

k - ‘
A= Zbi]{(x,m)+ciM+dK(x,§):bi,ciER,izl,...,k,dZO .
dy

=1

The argument found in the proof of Theorem 6.3 shows that ¢T is a best approximation
to f from M, which is a contradiction.
Case 2: £ € {n1,... .k}, k<n-—2.

Suppose £ = n;. We first claim that the zero function is a best approximation to f — ¢*
from

k -

. 0K (x,n; . .

A:{E bﬂﬁ(:ﬂ,m)—l—ci%—l—dﬁ(%o:bi,ciER,Z=1,...,k,d20},
=1

for any ¢ ¢ {m1,...,nk}. This fact can be shown in the same way as in the proof of
Proposition 6.1.

Again, the same analysis as in the proof of Theorem 6.3 shows that ¢ is a best
approximation to f from M, which is a contradiction.

Case 3: £ € {ny,...,nk}, k=n—1.

We shall not give the details of this case, as it lengthy. It entirely parallels Case 3 of
Proposition 4.3, and the above ideas. W

We end this paper with a final result concerning the ¢*.

Proposition 6.6. Assume that the best approximation to [ € C from M, is not in
Qnt1(€). Let gf and grtH denote the unique best approximations to f from Q,(¢) and
Qnt1(€), respectively. If g has the form

T

g (2) =Y K (x.&),

=1
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where a; > 0,1 =1,...,n,and £ =& < --- < &, < & + 27, while g,fﬂ has the form

n+1
g1-7|,-|-1(‘r) = Z bllf(xa 771) >
=1

where b; >0,:=1,...,n+1,and { = < -+ < g1 <M + 27, then

ni < & < Nit1, 1=2,...,n.
Proof: We have
~ - " n+1 n
2 < Zo((f = 9.) = (F = 9841)) = Zelgiin = 97) = Ze 3 biEK(wom) = Y ai(x, &),
i=1 i=1

Note that ny = & = £. We have a nontrivial linear combination of 2n functions, which
form a QT-system, and which vanishes at 2n distinct points (since || f — g7 || > ||f—g:+1 -
The coefficients are uniquely determined, up to multiplication by a constant (since their
span contains a T-space of dimension 2n — 1).

Assume
2n

Y eK(9;,¢)=0, j=1,...2n,

=1
for some 6y < -+ 63, < 0; 4+ 27 and (; < -+ (on < (1 + 27 (and the ¢; not all zero). The
¢; are proportional to

T T .
-1)'K o , 1=1,...,2n.
(=1 ( Ciy-vyCan—1 )

As such the ¢; alternate in sign. Moreover, the {a;} and {b;} are all positive. Thus we
must have a; > by, and

ni < & < Mig1 s 1=2,...,n. N
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