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Abstract. We present a Chebyshev-type characterization for the best
uniform approximations of periodic continuous functions by functions
of the class

M={f@): fe)= / K wh(y)dy, B <1 a e, ye0,2m)},

where K(z,y) is a strictly cyclic variation diminishing kernel.

81 Introduction

Let W [a,b] be the Sobolev class of functions in C"~'[a, b] whose (r—1)st
derivative is absolutely continuous and whose rth derivative is an element
of the unit ball of L*[a,b] and let W be the analogous class of 2-
periodic functions.

N. Korneichuk obtained in 1961 (see [4], p. 225) a characterization for
the best approximation of a continuous 27 -periodic function by functions of
the class W . His characterization was evidently valid in the non-periodic
case for the class W1 [a,b].

In 1980 U. Sattes [6] extended this result to all the classes W [a,b]
with » > 2. It turned out that the best approximation coincides in some
subinterval with a perfect spline of degree r satisfying some Chebyshev-
type conditions.

Shortly thereafter A. Pinkus [5], motivated by Sattes’ result, consid-
ered the class

M ={f(z): f(z) =/O K(z,y)h(y)dy, U(y) <h(y) <ul(y)},

where u,l € C|0,1], fixed, u > [, and where K(z,y) is a continuous strictly
totally positive kernel. For this class he obtained existence, uniqueness and
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characterization of the best approximation to f € C10,1] from M|y ), with
the best approximation being a generalized perfect spline.
It is the aim of the paper to present a periodic analog of Pinkus’ result.

Let C(T) be the space of all 2m-periodic continuous functions f,
under the Chebyshev norm || f|| = max{|f(z)|: = € R}.

For a function f € C(T), let Z.(f) denote the number of zeros of f
in a period and let S7(f) and SF(f) denote the two usual measures of
the number of cyclic sign changes of f (see [3], p. 250-261 for definitions),
ST(f) < Zf) < SF(f). A 2r-periodic Borel measure p is said to have
2n (n =1,2,...) relevant cyclic sign changes, denoted by S.(u), if there
exist disjoint sets Ay < -+ < Az, < Ay + 27, with Ufﬁl A; =la,a+27)
for some real a, such that (—1)iy is a nonnegative measure on A; and
u(A;) #0, 1 =1,...,2n. If f is a summable 27-periodic function, then
by S7(f) we mean S.(u), where f(y)dy = du(y).

Definition 1.1. We say that a kernel K(z,y) € C(T?) is strictly cyclic
variation diminishing, abbreviated SCVD | if for any nonzero 27 -periodic

Borel measure p we have St (f) < S.(u), where f(z) = fo%K(;v,y) du(y).

It follows from the definition that for every set of points y; < -+ <
Yok—1 < Y1 + 27 the functions K(z,yy),..., K(x,yzx—1) form a Chebyshev
system. In view of this it is easy to prove that for each SCVD kernel there

exists a sequence of signs ¢ = +1, £k =1,2,..., such that
e det || K (zi,y;)||I7521 > 0, (1.1)

for any two sets of points z; < -+ < xop—1 < 21 + 27 and y; < - <
Yor—1 <y1 +2m, k=1,2,... .

Let us consider the class

2m
M={f(z): flz)= /0 K(z,y)h(y)dy, |h(y)] <1 a.e., y€[0,2m)},
where K(z,y) is an SCVD kernel.

Definition 1.2. A function f € M, f(z) = foh K(z,y)h(y) dy, is said to
be a generalized perfect spline relative to M if there exists a nonnegative
integer n =0, 1,..., such that

(I) If n=0, then A(y)=1 or —1 a.e.

(IT) If n > 1, then there exist knots £ < -+ < €3,, < &1 +27, such that
hy) = (=1)T ace, & <y<é&r, j=1,....2n, fopqy = & + 27,

Definition 1.3. A function g € C(T) is said to equioscillate on 2k points
if there exist 6, < -+ < 62 < 6; + 27, such that (=1)'¢g(6:;) = d||g]|,
i=1,...,2k, for some § € {—1,1}.

We can now formulate our main result.
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Theorem 1.1. Assume that K(z,y) is SCVD and g € C(T)\ M. The
best approximation f* € M,

ﬁ@=A”K@mM@@,

to g from M is uniquely characterized as follows.

There exists a nonnegative integer n = 0,1,2,... such that f* is a
generalized perfect spline relative to M with 2n knots & < --- < &, <
&1 + 2m, such that

(I) If n = 0, then there exists a real 8, for which (¢ — f*)(0) =
evsignh{lg — f|.

(IT) If n > 1, then

R*(y) = (=1)7F! a.e., £ <y<é&j41, 7=1,...,2n, (1.2)

and at least one of the following two assertions is true.
(ITa) g — f* equioscillates on 2n 4 2 points.
(ITb) There exist 6y < --- < by, < 6y + 27 , such that

det | K (8, €)]27, = 0 (1.3)

i

and for some 0, , 0 satisfying 63,1 < 6}, < 6y, < 6), <6, + 27,

(0= 16 =~ = )by == (g = PIoan) =
where ¢,, satisfies (1.1), and
€541 2n
e = sign det / K(6;,y)dy (1.5)
£ ,j=1

Remark . Theorem 1.1 remains true if we omit condition (ITa). The proof
of this fact is rather long, and we do not include it in the paper.

The proof of Theorem 1.1 is given in Section 3. Section 2 presents
some preliminaries.
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§2 Preliminaries

Definition 2.1. A linear independent system of functions wuy,...,us, €
C(T), where n =1,2,..., is said to be quasi-Chebyshev, abbreviated QT
if wy,...,u2p—1 is a Chebyshev system and Z.(f) < 2n for any nontrivial
polynomial f = ajuy + --+ + agpuz,. The 2n-dimensional linear space

spanned by a QT -system is called a quasi-Chebyshev space or a QT -space.

Quasi-Chebyshev systems were introduced in [1]. We need some of
their properties.

Let U be the QT -space spanned by a QT -system uy,...,us, € C(T).
A set of 2n points t1 < -+ < tg2, < t1 + 27 1s said to be an [-set relative
to U if det [|ui(t;)||;7=; # 0, and an NI-set otherwise.

It is easy to see that for any NI-set 71 < -++ < 1, < 71 + 27 there
exists a function u, € U, called a winding polynomsial, such that u,(7;) =
0, j=1,...,2n and e(=1)7u(t) > 0, 7; < t < Tj41, with ¢ = £1. For
a given NI-set the winding polynomial is easily checked to be uniquely
determined up to a nonzero real factor.

Lemma 2.1.[1] Let 71 < --- < 7o, < 71 + 27 be an NI-set and let the
set T = {t1,...,tan} satisfy 7j <t; < 1j41, 7=1,...,2n. Then T is an
I -set .

The following theorem is a reformulation of Theorem 1 in [1].

Theorem 2.1. Let uy,...,us, € C(T) be a QT -system and let U be the
corresponding QT -space . Suppose that f € C(T)\ U. A polynomial
u € U is a best approximation to f from U if and only if there exists an
NI -set relative to U, 8; < --- < 03, < 8; + 27, such that

(f—w)(01) = —(f —u)(b2) = = (f —u)(b2n—1) =

(f = u)(8) = —(f —w)() = £]f — ul (2.1)

for some 6, , 0 satistying Oyn_1 < 05, < by, <0y < 6y +27.

In the rest of this section we consider some properties of SCVD ker-
nels.

Proposition 2.1. Let K(z,y) be an SCVD kernel andlet v1 < -+ < 42 <
Y1 4+ 27, n = 1,2,... be a set of points. Then both systems of functions
K(z,v),....,K(2,v2n) and K(v1,y),...,K(v2n,y) are quasi-Chebyshev.

Proof: Add a point v2n41 € (V20,71 + 27). The proposition follows
from the fact that, by (1.1), all the systems {K(x,~1),..., K(z,v2n-1)},
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{K(z,v1),..., K(2,v2n41)}, {K(v1:y), - K(v2n-1,9)} and
{K(v1,9):-- -, K(v2n+41,y)} are Chebyshev. W

Proposition 2.2. Let two sets of points & < -+ < &, < & + 27 and
0y < -+ < by, <0y +2r satisfy (1.3) for a given SCVD kernel K(z,y).

Then for any {yi1,...,y2n} such that & < y; < &41, 7 =1,...,2n,
we have

sign det | K (6, )|, = = £0, (2.2
where ¢ satisfies (1.5).

Proof: It follows from (1.3) that {&1,...,&n} is an NI-set relative to
QT -space U spanned by {K(61,y),...,K(62,,y)}. Therefore, by Lemma
2.1, {y1,-.-,y2n} is an I-set and the determinant on the left-hand side of
(2.2) is nonzero. If there exist y;, y; (&5,&41), j =1,...,2n, such that
dot 1K (B, ;) |27, det | (8, 57|22, < 0, then {y? = ag;-+(1—a)y/ 122,
is an NI-set for some a € (0,1). Thisis 1mp0881ble in view of Lemma 2.1.

Proposition 2.3 Let K(z,y) be an SCVD kernel, and let u be a nonzero
27 -periodic Borel measure such that (—1)’T'u is a nonnegative measure
on (&,€41), 7=1,...,2n, with & < --- < &, < & + 27

Assume that 6; < --- < 6, < 6y + 27 satisfy (1.3). Then there exist
i =1,...,2n, for which c,e(=1)"f(6;) < 0, where f(z) :fOZTrK(;E,y) du(y),
en satisfies (1.1), and e satisfies (1.5).

Proof: Suppose, to the contrary, that
ene(=1)f(6;) >0, i=1,..., 2n. (2.3)

Because of the SCVD-property of the kernel, we have S.(u) 2 F(f) > 2n
and, therefore, p is nonzero on each interval (£;,&41), J = 1,...,2n.
Consider the representation

2n
F6:) =D (=1)* (6, i=1,....2n, (2.4)
j=1
where ¢;(x ff”l K(z,y)|du(y)|, 7=1,...,2n. By Proposition 2.2,

def
6 = det”%‘o]( )HZ] 1 —

[P E142m .
/ / det | K (B ;) 27y [dja(yzn)] - |du(ys)] # 0
1
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and signd = ¢. Hence, we can derive from (2.4) that
2n
1= Z(—l)k+1f(9k)5_l det |l (013721 ien, o (2.5)

k=1

However, in view of (1.1),
sign det ||99](91)||?7;=1 iZk, j#1 —

€3 &142m
— sign / / At 11 65,y ik oot 1 (o) - 1dpi(y)] = 2.
2

Because of this it follows from (2.3) that each term on the right-hand side
of (2.5) is nonpositive. The left-hand side cannot be 1. This contradiction
proves the proposition. H

3 Proof of Theorem 1.1

It follows from the compactness of the class M, that for any ¢ € C(T)
there exists an element of best approximation f* € M. The same analysis
as one used by K. Glashoff in [2], shows that f* is a generalized perfect
spline relative to M, f*(x fo K(z,y)h*(y)dy . Therefore, by the
convexity of M, f* is unlque (see the proof of Corollary 2 in [2]).

If f* has no knots, then it is readily seen that f* can be characterized
by the condition (I) of Theorem 1.1.

Let f* have 2n knots & < -+ < &n < &1 427, n > 1, so that (1.2)
holds. We will show that f* can be characterized by the condition (II) of
Theorem 1.1.

Sufficiency. If we have ||g — f|| < |lg — f*|| for a function f(z) =
U7 K (2,y)h(y)dy € M, then SH(f* — f) < S7(h* —h) < 2n. On the
other hand, in the case (ITa), ST (f*—f) = SH((g—f)—(g—f*)) > 2n+2,
a contradiction. In the case (IIb) there exist 6; < --- < 9, < 6y + 27
satisfying (1.3) such that (1.4) holds for some 65, 65  with 65,1 <

2n>?

0, < 02, <6), <6 +2x. From (1.4) it follows that

Necessity. We first prove the following assertion.

(A) The zero function is a best approximation to g — f* from the
QT -space U* spanned by the QT -system K(z,&1),...,K(z,&).

Following the argument similar to that in the proof of Lemma 4.4 in

[5], we suppose, to the contrary, that there exist u = ijl a; K(z,&5) e U*
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such that |lg — f* —ul| < |lg = f*||. Then, for v € (0,1), |lg = f* —yul <
lg = f*Il = ve, where ¢ = |lg — f*|| = [lg — f* — ul[ > 0. Set

o
(z) =23 (=1) | K(x,y)dy,
£ (2) Q >/Ej (2,) dy

where £ = ¢; +(=1)(y/2)a;, j =1,...,2n. Then f*+ f., € M provided
~ is sufficiently small. On the other hand, by the continuity of K(z,y), we
have 71—yl = o(). Thus, lg—(£*+ )l < lg— F*—vull + 1) <
llg — f*|| — ve + o(xy), which, since ¢ > 0, contradicts the assumption that
f* is the best approximation to g from M. Therefore (A) is true.

It follows from Theorem 2.1 that there exists an NI-set relative to
U*, 6y < - < by, <6y + 27, such that (g — f*)(6h) = —(¢ — [*)(02) =
= (9= ) 2n—1) = =(9 = [*)(03,) = =(g = [*)(63,) = Allg — f*| for
some 6., 09 satisfying 62,1 < 0, < b, < 0, < 6, + 27, and with
A=+1or —1.
Assume that f* does not satisty condition (Ila) of Theorem 1.1. In
order to check condition (IIb) it will be sufficient to prove that

A=¢epe (3.1)
where ¢, and e satisfy (1.1) and (1.5), respectively.

Because g — f* equioscillates on at most 2n points, there exist two
sets of points, {t/}3" and {t/}27,, ¢t/ < 6 <t} < t) < 6, < t§ <
< th o < 6L § oy, < tf < th 4+ 2m, such that (¢ — f*)(¢)) =
(0 — £ = (g — £ i = L. on, (—1)ig — £ < o —
¥, t € (té’_l,t;+1) i = 1,...,2n. In each interval (t;’,t;+1) we now
choose a point 7; € (¢ ,t;+1) By Lemma 2.1, {r;}?", is an I-set rela-
tive to U*, so that det | K (r;,&;)|7" o1 # 0. Tlansf01m1ng continuously ¢;
into {41, J =1,...,2n, we can find points yi,...,y2n, y; € (&,&541),
such that det H.[&(T“y])l _; = 0. Then {r;}?", is an NI-set relative
to the QT -space spanned by {K(z,y1),...,K(z,y25)}. Let wr(z) =

Ef e K (x, y]) be the corresponding Winding polynomial, with ay = 1.

Therefore, w,(z) = fOQW K(z,y)duo(y), where uo(y) = Ef 1 a;0(y —yj)
and 0(y) is the Dirac measure. Since S.(po) > ST (w,) = 2n, we have

signa; = (=1)"*1) j=1,...,2n. (3.2)

It follows from Proposition 2.3 and the definition of winding polynomial
that e,e(—1)'w,(6;) <0, i=1,...,2n.
If (3.1) is not valid, i.e., A = —e,e, then \(—1)'w,(t) >0, ¢ € [th,¢/].
Therefore,
lg = f* +w.| < llg = £ (3.3)
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if v > 0 is small enough. Set

Then, by (1.2) and (3.2), f* —yw” € M when v > 0 and h > 0 are
sufficiently small. Furthermore, ||w, —w!|| — 0 as h — 0. Thus, in view
of (3.3), |lg— (f* —~ywh)|| < ||g — f*|| for some v and &, which contradicts

the optimality of f*. W
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