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STABLE APPROXIMATION AND INTERPOLATION WITH (!
QUARTIC BIVARIATE SPLINES *

OLEG DAVYDOV'T AND LARRY L. SCHUMAKER 1}

Abstract. We show how two recent algorithms [6,7,14] for computing C! quartic interpolating
splines can be stabilized to insure that for smooth functions, they provide full approximation power
with approximation constants depending only on the smallest angle in the triangulation.
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1. Introduction. Suppose V := {v;}}; is a set of points in the plane. We are
interested in the following

PROBLEM 1.1. Find a triangulation /\ whose vertices contain the points of V,
and an operator QQ mapping smooth functions into S} (A) so that

(1.1) Qf(vi) = f(v), i=1,...,n,

and @ provides optimal order approzimation in the sense that if f is in the Sobolev
space W(Q), then

(1.2) 1f = Qflloo < K[AP[f]5,00-

Here |A| is the diameter of the largest triangle in A\, | - |5,00 is the usual Sobolev
semi-norm, K is a constant depending only on the smallest angle 6 in A, and S}(A)
is the space of bivariate splines of smoothness r and degree d defined on the union 2
of the triangles in A.

If we do not insist on full approximation power, then the problem was solved
already in [3], where it was shown how to construct interpolating splines in S} (A) for
arbitrary triangulations A of the set V. On the other hand, it is well known [5] that
S1(A) does not have full approximation power for general triangulations. So choosing
the triangulation is a nontrivial matter, especially if we want an interpolation scheme
where the constant K in (1.2) depends only on the smallest angle 8 and is otherwise
independent of the geometry of the triangulation A.

It is well known that great care is required in establishing approximation results
for bivariate splines with constants that depend only on the degree of the splines and
the smallest angle in the triangulation; cf. [8,11,15].

Problem 1.1 was addressed in [6,7,14], where algorithms for converting any given
triangulation into a so-called type-O triangulation are presented, and an interpolation
operator @ satisfying (1.1) and (1.2) was constructed, with constant K independent
of f and |A|. However, it appears to us that to make their operator Q satisfy (1.2)
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with a constant depending only on the smallest angle 8a, one needs a stable local
basis B := {B¢}eem for S§(A) on arbitrary type-O triangulations. By this we mean
(cf. [8,12,15]) a basis such that

(1.3) supp (B¢) C starf(v¢) for some vertex v, all £ e M,
(1.4) Killelo < 1Y ceBelloo < Kallelloo,
£eEM

where the integer £ and constants K1, K2 > 0 depend only on the smallest angle 6
in A. Here star(v) = star!(v) is defined to be the union of the triangles with vertex
at v, and starf(v), £ > 2, is defined recursively as the union of the stars of the vertices
in star~!(v).

It is not difficult to see that the construction of local bases in [6,7] does not guar-
antee stability, see Remark 14.1. Moreover, the swapping algorithm in [7] does not
control the size of the smallest angle in the resulting type-O triangulation; see Exam-
ple 8.1 below. The purpose of this paper is to improve the construction by working
with a more restricted class of triangulations which we call type-Oy triangulations,
modifying the construction of local bases to guarantee stability, and restructuring the
swapping algorithm of [7] to control angles.

The paper is organized as follows. In Sect. 2 we present some standard Bernstein-
Bézier notation, and in Sect. 3 review the concept of minimal determining sets. Type-
Oy triangulations are introduced in Sect. 4, while in Sect. 5 we discuss constructing
minimal determining sets on disks for C'! quartic splines. These results are then used
in Sect. 6 to construct stable local bases for S}(A) on type-Oy triangulations. In
Sect. 7 we present an algorithm based on Clough-Tocher refinement for converting an
arbitrary triangulation with smallest angle 6 into a type-Oy/, triangulation. Sects. 8—
10 deal with edge swapping, cells, and certain special vertices, and in Sect. 11 we
present an algorithm based on swapping for converting an arbitrary triangulation with
smallest angle 8 into a type-Ogg triangulation with an appropriate k depending only
on #. In Sects. 12 and 13 we discuss quasi-interpolation, and Lagrange and Hermite
interpolation. We conclude with several remarks in Sect. 14.

2. Notation. We make use of standard Bernstein-Bézier techniques for dealing
with polynomial splines on a triangulation. In particular, given a polynomial p of
degree d on a triangle T := (u, v, w), we use the Bernstein-Bézier representation

- E: T Rpd
p= ¢ijk Bijt
itjth=d

where Bgij & are the Bernstein polynomials of degree d associated with T'. It is standard
practice to associate the coefficients ciTjk with the domain points in Dy y := { ;rgk =
(iu + jo + kw)/d}iyjyr=a- The set Ry (u) := {€]_, ; ,_;}i=q is called the f-th ring
around u, while D¥ (u) := Ufn:O RE (u) is called the ¢-th disk around wu.

We shall also make extensive use of the standard smoothness conditions for piece-
wise polynomial functions. Suppose that T := (u1,us2,us) and T := (u4,us, us) are
two adjoining triangles that share the edge e := (u2,u3). Let p and p be two polyno-
mials of degree d with B-coefficients c;;;, and ¢;; relative to 7' and ZI~”, respectively.
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Then it is well known that p and p join with C9 continuity across the edge e if and
only if

(21) éO,m,d—m = €0,d—m,m> m = Oa ceey da

and that they join with C! continuity if and only if in addition
(2-2) Cl,m—1,d—m = Q€1 d—mm—1 + B €0,d—m+1,m—1 T 7Y €0,d—m,m;» m=1,...,d,

where (a, 8,7) are the barycentric coordinates of u4 relative to the triangle 7T'.

Given a triangulation A, let Dy A be the union of Dy over all T € A. Then
it is well known that there is a 1-1 correspondence between the space S9(A) and
the set {c¢ }eep, A, Whereby the coefficients {c¢ }eep, nnT are the B-coefficients of the
polynomial s|r.

As usual, we define R;(v) and Dg(v) to be the unions of R} (v) and D} (v),
respectively, over all triangles T' attached to the vertex v.

3. Minimal determining sets. We recall [4] that if S is a linear subspace of
S89(A), then M C Dy n is said to be a determining set for S provided

Aes=0 forall (£ € M implies s=0,

where )¢ is the linear functional defined on SY(A) that picks off the B-coefficient cg.
M is called a minimal determining set (MDS) if there is no smaller determining set. It
is known [4] that if M is a minimal determining set for S, then dim S = #M.

If M is a MDS for S, then for each £ € M there exists a unique spline By € S
satisfying

(3.1) ABg =0¢n,  allpe M.

The splines B¢ obviously form a basis for S, commonly called the dual basis corre-
sponding to M.

DEFINITION 3.1 [12]. A minimal determining set M for a spline space S C SY(A)
is called o stable local MDS provided that the corresponding dual basis B := {B¢}¢em
satisfies (1.8), and

(3-2) [1Belloo < K

for all £ € M, where the constant K depends only on d and the smallest angle O in
A.

It was shown in [12] that if M is a stable local minimal determining set for a
spline space § C S9(A), then the dual basis B is a stable local basis for S in the sense
that both (1.3) and (1.4) hold.

For a given spline space S, there are generally many different minimal deter-
mining sets M. However, designing algorithms which produce stable local minimal
determining sets is nontrivial, in general.

4. Type-Oy triangulations. Given 8 > 0, let Ty be the set of all triangulations
whose smallest angle is at least §. In order to construct stable local bases for the spline
spaces S}(A), we need to work with a restricted subclass of Tp. First we introduce
some terminology.
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DEFINITION 4.1. The degree deg(v) of a vertex v is the number of edges attached
to it. A vertex v is a called a good vertex if it is a boundary vertex, an interior vertex
of odd degree, or an interior vertex with deg(v) = 4. Any other vertex is a bad vertex.

In [3], good and bad vertices are called terminating vertices and propagating
vertices, respectively. A vertex v is bad if and only if it is an interior vertex of even
degree at least 6. In the following we will say that a vertex is odd (even) if deg(v) is
odd (even).

For any three vertices u,v,w, we denote by /(u,v,w) the smallest of the two
angles made by the edges (v,u) and (v, w) meeting at v.

DEFINITION 4.2. Suppose e := (v, z) is the edge between two triangles {(u,v,z)
and (v,w,z). Then e is called 6-near-degenerate at v provided m — /(u,v,w) < 62 /4.
If v is a bad vertex, z is a good vertex, and e is not @-near-degenerate at v, we say
that v is §-supported (by z). We call e a 6-supporting edge for v.

Near-degenerate edges were first introduced in [15], and also play a role in [12].
Our definition here is slightly different. The case where /(u,v,w) = 7 corresponds to
a classical degenerate edge. We are now ready to introduce the class of triangulations
of interest in this paper.

DEFINITION 4.3. We call /A € Ty a type-Oy triangulation provided that every bad
vertex v in A is 0-supported.

Type-Oy triangulations form a subclass of the type-O triangulations introduced in
[6,7]. The key difference is that for a type-O triangulation, it is only required that
supporting edges be non-degenerate. Not all triangulations are of type-Og, of course,
but in Sects. 7 and 11 below we present variants of the methods in [6,7], which can
be used to convert any given triangulation A € Ty into a triangulation of type-Oy /o
or type-Op respectively, where k is an appropriate constant depending only on 6.

5. Minimal determining sets on disks D»(v). Throughout this section we as-
sume that A is a type-Og-triangulation. Following [3], as a first step towards building
a stable local basis for S} (A), in this section we focus on the disks D2 (v) surrounding
vertices v of A. Given such a disk, we say that M, C D»(v) is a MDS for S}(A) on
D3 (v) if setting the coefficients {c¢}¢ear, to arbitrary real numbers, the coefficients
{ce}eepa(v)\ 1, can be uniquely computed by using those smoothness conditions (2.2)
that involve only coefficients ¢g with £ € Da(v). We call such a MDS stable provided
that

max |c| < K max |cgl,
£€D2(v) £EM,

where K is a constant depending only on 6. Let
(5.1) Ev i ={€ € Ra(v) Ne: eis an edge attached to v}.

Throughout the section we suppose that the vertices attached to v are labelled as vy,
.., U, in counterclockwise order. If v is an interior vertex, we identify v,4+1 = v1.
Let T; := (v, v;,vit1). Recall that a vertex is called singular provided that it is formed
by the intersection of two straight lines.
LEMMA 5.1. If v is a good vertex of /\, then there exists a set Ay C Da(v) \ &
such that My := A, Uy is a stable MDS for Sj(A) on Da(v).

Proof. We choose the sets M, as in Lemmas 2-5 of [3], but with special care to
insure stability. We divide the proof into four cases. For convenience, we define a;
to be the B-coeflicients associated with the domain points §2Tl"1 fori =1,...,n, and
let co be the coefficient associated with the domain point at v. In addition, we let b;
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Fi1G. 1. B-coefficients in Case 4.

and ¢; be the coefficients associated with the domain points at the intersections of the
edges e; := (v,v;) with the rings R;(v) and Ra(v), respectively, see Fig. 1.

Case 1: If v is a boundary vertex, we choose
.— Ty T T T
(5.2) Av := {&00, €3105 E3015 211 }-

Suppose that the coefficients {c¢}eeam, of s € S(A) have been set. Then clearly
using the smoothness conditions (2.2), we can compute all remaining coefficients in
D> (v). Their computation is stable since the size of the multipliers in the smoothness
conditions is controlled by the smallest angle in A. Thus M, is a stable MDS for
S1(A) on Dy (v).

Case 2: If v is an interior vertex of odd degree, we choose

(5.3) Ay = {63807 gfo’ :%11 .

Assume that the coefficients {c¢}eear, of s € S(A) have been set. The smoothness
conditions stably determine the remaining coefficients in Di(v). That leaves n re-
maining coefficients a1, ..., a, on Ry(v), where a; is associated with the domain point
€1, Assuming as in [3]

(5.4) vj = a;jvj-2 + Bjvj-1 + v,

then writing down the C! smoothness conditions across each of the edges (v, v;) leads
to the system

0 o --- 0 —a 1 a1
1 0 - 0 0 —Q3 a

(5.5) —az 1 0 0 0 az | =rp,
0 0 -+ —an 1 0 an

where the components of the right-hand side r are just combinations of the known
coefficients involving the factors §; and ;. As observed in [3], the determinant of this
matrix is 1-][7_, ;. It is known (and easy to see) that since n is odd, []}j_; aj = —1,
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and thus the determinant is 2. But then applying Cramer’s rule, we immediately see
that the computation of a; is stable, i.e. |a;| is bounded by a constant times the size
of the set coefficients, where the constant depends only on the smallest angle 6 in
A.

Case 3: If v is a singular vertex, we choose A, as in (5.2). Assume that the co-
efficients {c¢}eem, of s € Sj(A) have been set. The smoothness conditions (2.2)
stably determine the remaining coefficients in D1 (v). Then there are three remaining
coefficients as, a3, a4, where a; is associated with the domain point 5;{1. Asin Case 1,
these coefficients can be stably computed from the smoothness conditions (2.2). Al-
though there are more conditions than unknowns in this case, a2, as,as are uniquely
determined since as shown in [3], A, U &, is a MDS for S} (A) on D2 (v).

Case 4: If v is a nonsingular interior vertex with deg(v) = 4, we choose
(5-6) Av = {&160, €10, &1

where, without loss of generality, we suppose that (v,v1) is a “best edge” in the sense
that

(5.7) |B| = oax, |Bil,
and that
(5-8) g > 1.

To justify this last inequality, we note that the definition of barycentric coordinates
as ratios of areas implies v;1 A3 + v3 A1 = A1 + As + A3 + A4, where A; is the area of
the triangle T3, 7 =1,...,4. Hence,

Az + 13A;

> 1.
Az + Ay

max{vyi,v3} >

Labelling the B-coefficients as in Fig. 1, assume the coefficients {c¢}ecm, =
{a3, bs,co,c1,02,c3,c4} of s € S} (A) have been set. (They are marked with black dots
in the figure.) Then as shown in Lemma 5 of [3], the remaining coeflicients associated
with domain points in Dy(v) are uniquely determined. We now show that they can
be stably computed.

First, we compute a4 from the C! smoothness condition

(5.9) as = ai1a3 + Pica + 11ba,
across the edge e4. This computation is stable since a1, 1,71 are bounded by a

constant depending only on #. Then writing down five of the seven C! smoothness
conditions involving the unknown coefficients leads to the system

v»w -1 0 0 0 b1 —azaq — B2c1
B2 0 -1 0 0 a —a2bs — 1200
0 az v -1 0 b | = —pB3c2
(6%} 0 ,33 0 -1 a —7Y3Co

0 0 0 a1 m bs a3z — Pacs3
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As shown in [3], the determinant of this system is given by D = 2a4f327y3. Since
a4 = —A3/As, |a; | is bounded above by a constant depending only on the smallest
angle in the triangulation, see Lemma 3.2 of [15]. Taking into account (5.8), we obtain

(5.10) |D-t < Ki|Ba| 71,

where K7 depends only on the smallest angle in the triangulation. (Recall that 8; =0
if and only if e;_1 is degenerate at v. Since v is nonsingular, we have 32 # 0.)
Using Cramer’s rule, we obtain

by =-D-1 (063Oé4ﬁ201 + aufBzca + Pacs + azaszauficy
+ (727483 + v3(y2ta + 74))co + (27403 + azau(y1as + ¥3)) ba

-+ (a1a2a3a4 — 1) ag) .

Since a; = —Ai—1/Ai—2,i=1,...,4, we have aqasazas = 1. By using identities (26)
of [3], it is easy to show that

yoou 1 =0y ag Ba(vs + B32),  mas +3s =0y oy Bi(re + By
This, together with (5.7) and (5.10) implies
|b1| <K2max{c§ fEM }

where K> depends only on the smallest angle 8. At this point we have computed a4
and b; stably. But then we can stably compute the coefficients b2, bs and then ai,a2
directly from the C' smoothness conditions (2.2). O

ExaAMPLE 5.2. In Case 4 of the above lemma it is essential to choose a “best
edge” satisfying (5.7).

Discussion. Let v be a nonsingular interior vertex with deg(v) = 4, and let A,
be the set in (5.6). According to [3], M, = A, U &, is a MDS for S}(A) on D2 (v) as
soon as (2 # 0 and 3 # 0. Suppose that all coefficients {c¢}eem, of s € S(A) are
zero except ¢4 = 1. Then the calculation in Case 4 shows that

a2a3ﬁl

b :‘—
|b1 s

‘>K3 ‘ sin 03+04)‘

sin(fs + 01)

where K3, K4 depend only on 6, and 6; := /(v;,v,vi41), © = 1,...,4. Hence, if A,
were chosen without inforcing (5.7), then |b1| could be arbitrarily large, depending on
the exact geometry of the triangles attached to v. O

Lemma 5.1 does not hold in general for bad vertices (see Example 1 of [3]). In
this case we have to be satisfied with a MDS which contains all but one of the points
n (5.1).

LEMMA 5.3. Suppose v is a bad vertex of /\ that is 0-supported by the vertex vs.
Let Ay be the set of domain points in (5.2). Then

My = Ay U (€0 \ {es N Ra(v)})

is a stable MDS for S}(A) on D2 (v).
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Proof. Assume that the coefficients of s € S}(A) have been set. Suppose we
number the coefficients in D2 (v) as in the proof of Lemma 5.1. Then the smoothness
conditions stably determine the remaining coefficients in D1 (v) and all of the coeffi-
cients on Rz (v) except for the coefficient ¢3. Then with a4, 84,74 as in (5.4), we find
that
o = 8= 0402 = 74b3_

Ba

Since es is a §-supporting edge for v, it follows that |34] is bounded away from 0 by a
constant depending only on 6. O

It is easy to see that the M, of Lemma 5.3 is not guaranteed to be a stable MDS
if we only assume that es is non-degenerate at v. Indeed, in that case |34 may be
arbitrarily small, thus making |es| arbitrarily large.

6. Stable Local Bases for S}(A) on type-Oy triangulations.
THEOREM 6.1. Suppose A is a type-Oy triangulation, and let M be the union of
the following sets of domain points:

1) for each vertex v of A, include the set A, described in Lemmas 5.1 and 5.3,
depending on whether v is a good or a bad verter,

2) the point (v+wu)/2 for each edge (v,u) of A, except for one 0-supporting edge e,
for every bad vertex v.

Then M is a stable local minimal determining set for S; ().

Proof. First we show that M is a determining set. Suppose that s € S} (A) and
that we set all of its coefficients corresponding to domain points in M to zero. Then
by Lemma 5.3 it follows that all coefficients of s must be zero for domain points in
the disks D2 (v) where v is a bad vertex. But then by Lemma 5.1, all coefficients of s
must also be zero for domain points in the disks Da(v) where v is a good vertex. This
shows that all coefficients of s must be zero, and we conclude that M is a determining
set.

To see that M is minimal, we compare its cardinality with the known dimension
of S}(A). By [3],

(6.1) dim S} (A) =3V +4Ve + E + o,

where Vi, Vp are the number of interior and boundary vertices of A, E is the number
of edges, and o is the number of singular vertices. Now each of the sets 4, contains
4 points whenever v is a boundary vertex or a singular interior vertex. It contains 3
points for all other good vertices, and 4 points for all bad vertices. Since M includes
the center of each edge except for one supporting edge attached to each bad vertex,
we see that the cardinality of M is precisely the number in (6.1). This implies that
M is minimal.

Let {B¢}eecm be the corresponding dual basis splines satisfying (3.1). In view of
the nature of M, it is easy to see that the B¢ are locally supported. In particular,

1) if £ is a point in one of the sets A, as in item 1) of the theorem and v is a good
vertex, then B has support on star(v),

2) if £ is a point in one of the sets 4, as in item 1) of the theorem and v is a bad
vertex that is #-supported by u, then B has support on star(v) U star(u),

3) if £ is a point at the midpoint of an edge (v, u) as in item 2) of the theorem, then
B¢ has support on star(v) U star(u).
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This shows that (1.3) holds with £ = 2, and completes the proof of locality. Concerning
stability, we note that (3.2) follows immediately from the proofs of Lemmas 5.1 and
5.3. 0

7. Creating type-Oy/, triangulations with Clough-Tocher refinement.
In this section we show that the following algorithm from [6] can be used to convert
an arbitrary triangulation A in 7y into a type-Oy/, triangulation.

ALGORITHM 7.1. Suppose /\ € Ty. and let A©) := A,

Do for ¢ =0,...,
Stop if the set U; of bad vertices of A() that are
not f-supported is empty
Choose a vertex v € U;
Choose a triangle T attached to v
Split T into three triangles about its centroid, and
let Ali+1) be the resulting triangulation

THEOREM 7.2. Algorithm 7.1 terminates after a finite number of steps, and the
final triangulation is a type-Og /o triangulation.

Proof. First we consider a typical step where T := (u, v, w) is the triangle being
split about its centroid z, and v is the bad vertex that is not #-supported. Then
after splitting 7', clearly the smallest angle is at least §/2. Moreover, we claim that
each of the vertices u,v,w, z is either good, or is a #-supported bad vertex. Indeed,
deg(z) = 3 and v changes from even to odd, and so both z and v are now certainly
good. Now u may have switched from odd to even, so that it is now a bad vertex, but
since /(w,u,v) < 7 — 26, it follows that 7 — Z(w,u,v) > 20 > 62 /4x, and thus u is
f-supported by z. A similar argument shows that w is either good, or is §-supported
by z.

The fact that the algorithm terminates after a finite number of steps follows from
the observation that at least one nonsupported bad vertex is eliminated in each step.
Clearly, if a triangle is split, then none of its subtriangles will have to be split in a
later step. This guarantees that the smallest angle of the final triangulation A(M)
is at least §/2. Since every f-supported vertex is automatically 6/2-supported, we
conclude that AMM) is of type-Ogy. O

8. Edge swapping. It was shown in [7] that an arbitrary triangulation can be
converted to a type-O triangulation by performing a finite number of edge swaps.
However, as noted above, the class of type-O triangulations is too large to insure the
existence of stable local bases, and thus in Sect. 11 below we present a related algorithm
for converting triangulations A € Ty into type-Op triangulations with an appropriate
k. In this section we collect several preliminary results about edge swapping.

Given a triangulation A, suppose Th := (u1,u2,us) and Ty := {us3,us,us2) are two
triangles in A sharing the interior edge e := (u2,u4). The edge e is called swappable
if replacing the edge e by the edge € := (u1,us3) leads to a nontrivial triangulation
T, = (u1,u2,us) and Ty = (u1,us3,us). Obviously, e is swappable if and only if the
quadrilateral @ :=T1 U T3 is convex and e is not degenerate at either end. Swapping
edges in a triangulation A leads to a new triangulation A with the same vertices.

ExAMPLE 8.1. Swapping can lead to the introduction of small angles.

Discussion. Let T1,T> be a pair of triangles as shown on the left in Fig. 2.
The smallest angle in this triangulation is 7/4. The result of replacing the edge
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01+ 63
ay ay

u3

Fi1G. 2. Swapping an edge of a triangulation.

e := (u2,u4) by € := (u1,us3) is shown on the right. Its smallest angle is also m/4.
Now consider the same configuration with ua closer to the edge é. The smallest angle
in the triangulation on the left is still /4, but the angles 61,64 and thus the smallest
angle in the triangulation on the right can be arbitrarily small if us is close enough to
é. o

It is clear from this example that to prevent the creation of small angles, we have
to restrict the swapping process to quadrilaterals where the angles 85 + 63 and 8¢ + 67
in Fig. 2 are bounded away from .

LEMMA 8.2. Let @) be a quadrilateral as shown on the left in Fig. 2. Suppose that
the smallest angle in Q is 8, and that 02 + 035 < 7w — k10 and 05 + 07 < 7w — k26, where
Kk1,k2 > 0. Then after swapping the interior edge, the smallest angle in the resulting
triangulation is at least k@ where k = min{k1,k2}/(1+ (7/2)sin"28).

Proof. Note that 8 < 7/3 as 7/3 is the largest smallest angle any triangle can
have. Let a; and b; be the side lengths indicated in Fig. 2. Applying the law of sines,
we have

sin 04 sin 61 sin(01 =+ (93) sin 67 sin(04 =+ 95) sin fg
(8.1) = , = , = .
a1 as b1 a b1 az

This implies
sin 61 sin fg sin(01 + 98)

sinfy  sin@; sin(fy + 65)

It follows that 0 .
sin? 6 < oL

sinfy ~ sin%8’

Using the inequality 2z/7 < sinz < z, we get

2sin’f 6, ™

S . S )
™ 04 ~ 2sin*6

or equivalently,

61 < (m/2)84sin"2 6, 64 < (m/2)61 sin™2 6.
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Now the hypothesis implies 81 + 64 > k16, and it follows that
01,04 > K10/(1 + (7/2) sin"26).
Using 65 + 03 > k20, a similar argument shows that
B5,0s > k20/(1 + (m/2) sin"24),

and the result follows. O

9. n-Cells. Suppose A, is a triangulation with exactly one interior vertex v
and n boundary vertices. Such a triangulation is commonly called an n-cell. Sup-
pose the boundary vertices are numbered in counterclockwise order as vi,...,vn,
and identify v,y1 = vi. For each ¢ = 1,...,n, let €; := {(v,v;), Ti := (v,v4,Vi41),
0; = Z(Ui,’l),’l)i_:,_l), i = Z(’l),’l)z',’ui+1) -+ Z(vi_l,vi,v), and w; :=6; +6;_1.

LEMMA 9.1. Suppose Ay is an n-cell with n > 6 whose smallest angle is at least
0. Then

1) at least three of the @; satisfy i < m—40/(n — 2),
2) at most two of the w; satisfy w; > 7 — 0,
3) if wi,wj >7—0, then |i —j| =1, i.e., w; and w; correspond to consecutive edges.

Proof. To prove 1), suppose to the contrary that n — 2 of the y; are greater than
m —460/(n — 2). But then

n
46
-2 = i>n—2)(r— ——)+40=(n—2
(=27 =Y 0> (= Dr - Z5) +40 = (0=,

and this contradiction implies 1).

To prove 2), suppose to the contrary that wy,w;,wm > 7™ — 6. Then at least two
of these do not overlap, say wg,w;. That leaves n — 4 of the angles §; that are not
covered by wy, or wy, which leads to the contradiction

2r > wr +w +(n—4)0 > 21 — 20 + (n — 4)0 > 2.

The same argument proves 3) since w;,w; do not overlap unless they correspond to
consecutive edges.l

COROLLARY 9.2. Suppose A, is an n-cell with n > 6 whose smallest angle is at
least 8. Then at least one of the edges e; is not §-near-degenerate at either end.

Proof. Lemma 9.1 implies that for some i, both ¢; < 71—460/(n—2) and w; < 7—86.
Now né < 2w implies 4/(n — 2) > 4/n > 26/7, and thus

40 262 02 62
pi<m———<nm1——<7-— wi<m—0<7——

= 4_7

n—2 s 77 d7°

We conclude that the edge e; is not §-near-degenerate at either end. O

10. Special vertices. In this section we introduce a special kind of vertex of
importance in the following section.

DEFINITION 10.1. Given a verter v and associated n-cell A,, we say that v is a
0-special vertex provided

1) the smallest angle in A, is at least 8,
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U5 V4
V6 U3

U1 U2

Fic. 3. A special vertex v.

2) n > 6 is even,

3) v1 and v2 are odd while vs,. .., v, are all even,
4) e1 and ez are 0-near-degenerate at v,

5) e; is O-near-degenerate at v; fori=4,...,n—1.

Fig. 3 shows an n-cell A, associated with a special vertex v of degree n = 6.
If v is a #-special vertex, then Corollary 9.2 implies that either es or e, is not -
near-degenerate at either end. By definition of a 8-special vertex, we observe that
|m —w;| < 02/4m for i = 1,2, and | — ¢;| < 62/4m for i = 4,...,n — 1. We also have
0; > 0 for all i, and recall that § < 7/3.

LEMMA 10.2. Suppose v is a 0-special vertex, and let AU be the triangulation
obtained from A\, after first swapping the edge es, and then the edge (v,vs) of the
new quadrilateral (v,v2,v4) U (vs,v,v4). Then the smallest angle in Ay is at least K,
where

0
(10.1) k= (1 + (7/2) sin™? wh)
and
(10.2) W= :

T ow(1+ (x/2)sin"26)

Proof. Corollary 9.2 implies that either ez or e, is not #-near-degenerate at either
end. Without loss of generality, we assume it is edge es. In view of Lemma 8.2, after
swapping es, we get a new triangulation with smallest angle at least wf. Now let
Pa := L(vs,v4,v) + L(v,v4,v2) and @4 := L(vs,v,v4) + £(v4,v,v2). Since

n—1

(10.3) Da+wi+ Y 0 =2m,
i=5
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it follows that

92 02 02
<2 —(T— —)—O=m—f+ — <7 — —.
D4 < 2m — (m 47T) 0=m 0+47T_7T i
Examining the polygon {v,v2,v4,vs,...,v,), we see that
n—1
(10.4) P4+ Z wi + L(vp=1,vn,0) + 27 —w1) + L(v,v2,v4) = (n — 3)7.
i=5

Now wi < 7 + 62 /4w implies wy — 27 < —(7w — 02 /47). Furthermore, ¢; > 7 — 62 /4n,
i=25,...,n—1,and Z(vy—1,vn,v) > 6. Substituting this in (10.4), we get

2 2 2 2
Br<(n-3m—n- D)) o<t g T n T
v(3 T

since nd < 2m. Now Lemma 8.2 implies that after swapping the edge (v,v4), the
smallest angle in the resulting triangulation A, is at least k6 as asserted. O

11. Creating type-O,y triangulations with edge swapping. Swapping the
diagonal of a quadrilateral @) := (u,v,w,2) in a triangulation changes the degrees of
all four vertices of (). Thus, properly applied, swapping can be used to eliminate bad
vertices that are not supported from a triangulation, thus converting it to a type-O
triangulation. An appropriate algorithm can be found in [7], but it does not guard
against creating triangles with arbitrarily small angles. We now present an algorithm
which converts a given triangulation A € Ty into a type-O,y triangulation, where « is
given in (10.1). For the remainder of the paper we say that an edge of a triangulation
A is §-swappable provided that it is not §-near-degenerate at either end.

ALGORITHM 11.1. Given a triangulation A\ € Ty,

(I) Do for i=0,...,

Let U; be the set of bad vertices v of A such that
v is not f-supported and there exists a quadrilateral
Q := (u,v,w, 2) formed by two triangles (u,wv,z),{v,w,z)
in A®) such that u,v,w,z are all even and
e = (v,z) is f-swappable

Stop if the set U; is empty; otherwise, swap e and

let Ali+1) be the resulting triangulation

(IT) Let AN+1) be the final triangulation of the first loop
Do for ¢t =N+1,...,
Let W; be the set of f-special vertices of A
Stop if W; is empty; otherwise, choose a vertex v € W;,

perform the double swap of Lemma 10.2, and
let Ali+1) be the resulting triangulation

THEOREM 11.2. Algorithm 11.1 terminates after a finite number of steps, and
the final triangulation is a type-Og triangulation where k is given in (10.1).

Proof. We begin by discussing the first loop. Suppose v € U; and that @) :=
(u,v,w, z) is a quadrilateral with u, v, w, z all even. Then swapping the edge e := (v, z)
produces a new triangulation A(+1) in which all of the vertices u, v, w, z are now odd,
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and thus the vertex v is no longer bad. Clearly, the swap does not introduce any
new bad vertices, which also insures that no #-supported bad vertex of A9 becomes
unsupported. Hence # U;11 < # U;. By Lemma, 8.2 the smallest angle in AG+1) is
now at least wé, where w is given in (10.2). We also note that since v is now odd, none
of the edges attached to v will be swapped in any later step of the first loop. Since Uy
is finite, it follows that loop I stops after a finite number of steps.

We now claim that if a bad vertex of A(V+1) is not f-supported, then it must be
a f-special vertex. To see this, consider such a vertex v, and let v;, e;, T3, 0, @i, and
w; be as in Sect. 9. Note that:

1) If e; is f-swappable, then one of the vertices v;_1,v;,viy1 must be odd, since
otherwise we would have dealt with v in the first loop. The odd vertex cannot be
v;, since otherwise v; would support v.

2) If v; is odd, then the edge e; must be f-near-degenerate at v, since otherwise v;
supports v.

3) By Corollary 9.2, one of the edges e; is #-swappable. Without loss of generality
we take it to be e3. Then by 1), vs must be even. It follows that at least one of
the vertices v2 or vs must be odd. Without loss of generality, we suppose that
v2 is odd. Then by 2) we know that e is §-near-degenerate at v. This implies
wy >m—0%/4r > 7 — 6 and wy < ™+ 62 /4.

4) By Lemma 9.1, only one additional w; can be greater than 7 — 6, and it can

only be wi. Thus, w; < 7 —6 for i = 4,...,n. Hence, by 2), vs,...,v, must
be even. But then by 1), e4,...,en—1 cannot be -swappable, which implies that
each of the e4,...,ep_1 is f-near-degenerate at v;. In particular ¢; > 7 — 62/47

fori=4,...,n—1.

5) The edge e, is §-swappable. We already know that w, < m — 6. Let us show that

pn < m— 62/47. By examining the polygon (vi,v,vs,v4,...,v,), we see that
n
(11.1) Zcpi + 27 — wa + L(vn,v1,v) + L(v,v3,v4) = (n — 2)7.
i=d

Using nf < 2m, this implies

— 3)02 2 2 2 2
(n—3)6 :W—20+ﬂ—ﬁ<ﬂ'—£<ﬂ'—0

<7T-20 —.
P =T * 47 4 47 4 47

6) Now by 1) one of the vertices vp_1,vn,v1 must be odd, and it can only be v;.
Then by 2) e; must be §-near-degenerate at v.

This completes the proof that all unsupported bad vertices of A(V+1) are #-special
and thus lie in Wy1.

Now suppose we perform the double swap of Lemma 10.2 in an n-cell A, asso-
ciated with a v € Wy 1. After the double swap, v becomes an even vertex of degree
n — 2, the vertices vz and vs change from even to odd, v2 remains odd, and v4 remains
even. If n = 6, this means that v becomes a good vertex. Otherwise, it remains a bad
vertex, but since

62 62
(11.2) Llvs,v,v1) <2m—wp =20 <7+ ——-20 <7 — —,
47 47

it is now #-supported by va.
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We have shown that performing loop IT removes the #-special vertex v. Obvi-
ously, no new bad vertices are introduced. We now show that no #-supported bad
vertex becomes unsupported. Only the vertices and interior edges of the polygon
(v,v2,v3,v4,v5) are affected by the double swap. Thus, since ve2,vs3,v5 are now odd,
a new unsupported bad vertex could be introduced only if vs previously supported
a bad vertex, but no longer does. (Since vs4 remains even, this could only happen if
vs were of degree four.) But in this case vs4 could have supported the vertex v since
ws < 7 — 6@, which contradicts our assumption that v was an unsupported bad vertex.

Since Wp41 is finite, and the cardinality of W; is reduced in each pass through the
loop, we conclude that loop II terminates after a finite number of steps. Clearly, the
final triangulation A(M) contains only good vertices or §-supported bad vertices, which
are automatically k@-supported since kK < 1. Lemma 10.2 implies that the smallest
angle in A(M) is at least k6, and we conclude that it is a type-Og triangulation. O

12. Quasi-Interpolation. In this section we construct a quasi-interpolation
operator ) mapping functions defined on Q to the space of splines S} (A) on a type-Og
triangulation of Q2. The operator will produce optimal order approximation of smooth
functions.

Suppose M is the MDS for the space S}(A) described in Theorem 6.1, and let
{B¢}¢em be the corresponding dual basis splines satisfying (3.1). Then as shown at
the end of Sect. 6, the B, satisfy (1.3) with £ = 2. Let A¢ be the linear functionals
defined at the beginning of Sect. 3. Then we define

(12.1) Qf = Qoof = Y Ae(¢sm) Be,

£em

where T is the triangle in which the domain point £ lies, and where for a general
triangle T', ¢¢ 1 is the polynomial of degree 4 that interpolates f at the domain points
k- Similarly, we define

(12.2) Qpf = Xe(¢sr)B:, 1<p<oo,
gEM

where for a general triangle T', ¢; 1 is the averaged Taylor polynomial associated with
f and T, see [15].
By the duality of the basis,

(12.3) Ae(Qf) = Ae(orr), €M
and
(12.4) Xe(Qpf) = Xe(brm),  EEM,

and thus Qf = f and Qpf = f whenever f is a polynomial of degree 4.

THEOREM 12.1. Let 1 < p < oo. Then there exists a constant K depending only
on the smallest angle in /\ such that for all f in the Sobolev space W,f'H(Q) with
0<k<d,

(12.5) IDEDY(f = Qpf)llp < KIAP+=3| fleyr,p

for 0 < i+4+j < k. If Q is nonconver, K also depends on the Lipschitz constant
associated with the boundary of €.
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Proof. See the proof of Theorem 1.1 in [15]. O

13. Interpolation. The quasi-interpolator ) constructed in (12.1) for C1 quar-
tic splines on type-Oy triangulations can be used to solve certain Lagrange and Hermite
interpolation problems. Suppose A is a triangulation with vertices {v;}7 ;.

THEOREM 13.1. Let Q be the operator defined in (12.1). Then for any f defined
on Q,

(13.1) Qf (i) = f(v), i=1,...,n.

Proof. First we note that for each vertex v of A, M contains the domain point
at v. But it is well-known that if £ is a domain point lying at a vertex v of a triangle,
then A¢ f = f(v). Then (13.1) follows immediately from (12.3). O

To get a result for Hermite interpolation, we replace the Lagrange interpolation
polynomial ¢ by a Hermite interpolation polynomial. Given a triangle T" in A, let
&ﬁT be the polynomial of degree 4 that interpolates gradient information at each of
the three vertices of T' along with point values at the domain points {E;-gk} that do
not lie in the disks of radius one around the vertices.

THEOREM 13.2. Let () be the operator defined as in (12.1) based on éf,Te' Then

for any f defined on Q, Qf interpolates f at the vertices of /A as in (13.1), and
(13.2) DiD}yQf(w) = DiDjf(v),  i+j=1,

for all vertices v of A\ except for those that are nonsingular of degree four.

Proof. By construction, the minimal determining set M contains all vertices v of
A, and also two additional points on the ring R;(v) for all v € A except for those
vertices that are nonsingular and of degree 4. Thus, if v is not such an exceptional
vertex, then the gradient of Qf at v matches the gradient of (ﬁf’T at v, which in turn
matches the gradient of f there. O

14. Remarks.

REMARK 14.1. Although the local bases in [6,7] are stable for certain triangu-
lations (e.g. the three-directional mesh modified by either Clough-Tocher splits or
swapping), they are not stable in general. Consider, for example, the type-O triangu-
lations in Fig. 4 obtained from a slightly deformed three-directional mesh. The edge
e is not a supporting edge for the bad vertex v since it is w-near degenerate at v for a
very small w. If w — 0, then some of the basis functions corresponding to the points in
D5 (v) are unbounded, which shows that the basis is unstable. In addition, if a type-O
triangulation includes a near-singular vertex w, then basis functions corresponding to
D>(w) may also be unstable unless A4, are chosen in accordance with the procedure
described in Case 4 of Lemma 5.1 (cf. Example 5.2).

REMARK 14.2. For d > 3r + 2, the spaces S](A) are well-behaved for arbitrary
triangulations, and there are well-known results [8,12,15] on stable local bases along
with associated interpolants and quasi-interpolants which deliver full approximation
power. See also [11], where a Hermite interpolation operator with generally non-stable
minimally supported fundamental functions is constructed and shown to possess full
approximation power. If d > 4r + 1, then well-known finite-element interpolation
operators have full approximation power, see e.g. [9].

REMARK 14.3. As observed in [7], in converting an arbitrary triangulation with
smallest angle 8 to a type-O triangulation, swapping has a slight advantage over insert-
ing Clough-Tocher splits in that swapping does not introduce any new vertices (which
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F1G. 4. Type-O triangulations obtained by the algorithms of [6,7].

for interpolation would require extra data values which might have to be estimated).
The same observation applies to our algorithms, of course.

REMARK 14.4. It is possible to solve the Hermite interpolation problem (13.2) for
all vertices of a type-Oy triangulation if “type-Oy” is understood in a slightly different
manner, namely, that all non-singular vertices of degree 4 are also treated as “bad
vertices”, see [6]. Indeed, then the operator @) of Theorem 13.2 satisfies (13.2) for all
vertices. Moreover, any given triangulation with minimal angle 6 can be transformed
into a type-Og/2 triangulation of this kind by using Clough-Tocher refinement as in
Section 5.

REMARK 14.5. The methods described here can be adapted to perform interpo-
lation of scattered data on the sphere using the class of spherical splines introduced
and studied in [1,2]. We leave the details for a future paper.

REMARK 14.6. A pure Lagrange interpolation scheme for C'! quartic bivariate
splines has been recently constructed in [10]. For other work on interpolation and
approximation with C1 quartic splines on nonuniform triangulations, see [13,16,17].

References

1. P. ALFELD, M. NEAMTU, AND L. L. SCHUMAKER, Bernstein-Bézier polynomials
on spheres and sphere-like surfaces, Comput. Aided Geom. Design, 13 (1996), pp.
333-349.

2. P. ALFELD, M. NEAMTU, AND L. L. SCHUMAKER, Fitting scattered data on
sphere-like surfaces using spherical splines, J. Comput. Appl. Math., 73 (1996),
pp- 5-43.

3. P. ALFELD, B. PIPER, AND L. L.. SCHUMAKER, An explicit basis for C1 quartic
bivariate splines, STAM J. Numer. Anal., 24 (1987), pp. 891-911.

4. P. ALFELD AND L. L. SCHUMAKER, The dimension of bivariate spline spaces of
smoothness v for degree d > 4r + 1, Constr. Approx., 3 (1987), pp. 189-197.

5. C. pEBooOR AND K. HOLLIG, Approzimation power of smooth bivariate pp func-
tions, Math. Z., 197 (1988), pp. 343-363.

6. C. K. CHur aAnD D. HoNg, Construction of local C1 quartic spline elements for
optimal-order approzimation, Math. Comp., 65 (1996), pp. 85-98.



18

10.

11.

12.

13.

14.

15.

16.

17.

OLEG DAVYDOV AND LARRY L. SCHUMAKER

C. K. Cuur AND D. HONG, Swapping edges of arbitrary triangulations to achieve
the optimal order of approrimation, STAM J. Numer. Anal., 34 (1997), pp. 1472—
1482.

C. K. CHul, D. HONG, AND R.-Q. J1A, Stability of optimal order approximation
by bivariate splines over arbitrary triangulations, Trans. Amer. Math. Soc., 347
(1995), pp- 3301-3318.

P. G. CiArRLET, The Finite Element Method for Elliptic Problems, North-
Holland, Netherlands, 1978.

O. DavyDov AND G. NURNBERGER, Interpolation by C! splines of degree ¢ > 4
on triangulations, J. Comput. Appl. Math., 126 (2000), pp. 159-183.

O. DavyDov, G. NURNBERGER, AND F. ZEILFELDER, Bivariate spline interpo-
lation with optimal approzimation order, Constr. Approx., 17 (2001), pp. 181-208.

O. Davypov AND L. L. SCHUMAKER, On stable local bases for bivariate poly-
nomial spline spaces, Constr. Approx., to appear.

J. GAo, Interpolation by C' quartic bivariate splines, J. Math. Res. Expo., 11
(1991), pp. 433-442.

D. HoNa, Optimal triangulations for the best C1 quartic spline approximation,
in Approximation Theory VIII, Vol. 1: Approximation and Interpolation, Charles
K. Chui and Larry L. Schumaker, eds, World Scientific Publishing Co., Inc., Sin-
gapore, 1995, pp. 249-256.

M. J. LAl anD L. L. SCHUMAKER, On the approzimation power of bivariate
splines, Advances in Comp. Math., 9 (1998), pp. 251-279.

E. NADLER, Hermite interpolation by C1 bivariate splines, in Contributions to
the Computation of Curves and Surfaces, W. Dahmen, M. Gasca, and Charles A.
Micchelli, eds, Monografias de la Academia de Ciencias de Zaragoza, Spain, 1990,
pp- 55-66.

P. PERCELL, On cubic and quartic Clough—Tocher elements, SIAM J. Numer.
Anal., 13 (1976), pp. 100-103.



