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1. INTRODUCTION

Let X be a Banach space with norm ||, and {p_ }2:1 be a

sequence of continuous sublinear functionals (seminorms) on X .
According to the classical uniform boundedness principle in its
"resonance" form, 1f there exists a sequence {7 - }3:1 c X with
I 1y <1 and 1lim sup p (f )=« , then an Individual element

Tidos

T, € £ satlsfying lim sup p (f,) = « also exists. It is evident

T+ o

that f, can be chosen so that 1t satisfles |f}, <1 .

We can say that the uniform boundedness principle partially
answers the following general question. What conditions on Mc X
and {fn} <M provide the existence of an individual element

e €M such that p (f,) has the same asymptotic behavior as
p_(f. ) ? Undoubtedly, "the same asymptotic behavior" can be taken

variously. In the above-mentioned case of classical resonance
principle it means that p (f,) 1s unbounded provided p (f) 1s

unbounded.  But 1t 1s often required to construct an element
Fe €M for which a more precise condition, for example



2

lim sup p (7,)/P,(F,) > 0 Iim sup p_ (F)/p (F) 21

n+o n+o
lim int p_(7,)/0,(f,) > 0 lim inf p_(f,)/p, () 2 1
n+o n¥w

or lim p_(f,)/p,(f,) =1  holds.

n+w

It we choose a sequence { [ i };'::1 <@ such that pn(fn) =

Sp M) =swp (P :FeEMY or  pf)2p,MA=E)
Sn—-> 0, then our problem leads 1o the second C]IlES'ﬁiOIl. What

conditions on M provide the existence of an Individual element
7, €M such that p_ (f ) has the same asymptotic behavior as
p (M) ?

Problems of this type arlse, for example, in approximation
theory, and many specific results have been obtained In the case
that M 1s a class of differentiable functions and p 15 the
functional of the best approximation or the error functional of a
linear method of approximatlion (see [191).

A general approach to constructing elements f, €M
satlstfying
lim sup p, (F,0/p (f ) > 0 (1)
n+o

was developed by W. Dickmels and R. J. Nessel (see [16]1). They
wnified the gliding hump method arguments previously used by many
authors for solving such problems in various specific cases.
E. van Wickeren (23] presented an alternative approach to the
subject based on considering M as a Frechet space and applying
Baire's category theorem. His method makes possible proving
residuality of the sets of elements satisfylng (1) and, in some
instances, obtaining more precise results concerned with existence

of elements f, ¢ M satlsfying
1im sup pn(f*)/pn(fn) 21 : (2)

4o
and residualitry of the sets of such elements. :
A new version of this *"quantitative resonance principle" was
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worked out by the author in 1987 (see (4, 121), At the time,
however, we were not conversant with van Wickeren's result. S0,
our proor originally made use of the gliding hump method and,
therefore, did not allow to deduce the residuality (this flaw was
recently remedied in [141). Nevertheless, our conditions on M
and {7, } <M providing the existence of I, € M satisfying (2)

seem 1o be weaker and more easily verified. Because of this, our
result found many applications, primarily, in approximation theory
and made 1t possible to answer some questions posed by
P. L. Butzer and W. Dickmeis, N. P. Korneichuk, K. I. Oskolkov.

In what follows we glve the statement of our version of
quantitative resonance principle and describe its applications and
some related results.

2. MAIN THEOREM AND ITS CONSEQUENCES

A closed, absolutely convex set M 1n a Banach space X can
be defined by

M=M_ =17 ¢X:suph(f) <1
= {7ty }s
where H 1s a family of continuous seminorms. Denote

m,=dzem : ILimne) =0
2 { £ Ihfi-0 }

CIrh =sup (A 27X, Pl <1 ).

THEOREM 2.1. 1121 Zet {p, ). be a sequence of cont{nuous
0
seminorms on X 3 {J’n. }n:1 be a sequence of elements L, € M,
such that p,(fp) 20, nemw . If

J“n_ €My o neN (3)
m Ifle=0, (4)
T4 )

then there ertsts an element f, ¢ M, satisfying (2).



The hypotheses (3) and (4) can be changed for some conditions
on My , as the next two statements show (see (121).

~ CoROLLARY 2.2, I7 W] tis everyunere dense in W, (in the
meiric space X), then Theorem 2.1 holds true without suppostition

(3).
COROLLARY 2.3. Iet B, ve compact. Then under the

hypotheses of Theorem 2.1 or Corollary 2.2, apart from (4), there
erists an element f. ¢ M, satisfying

Um sup p_(7,)/p(£.) > 1/3. (5)
4w

Let us put
(M) = su )
P.(M) = sup p,

- The case that

lim p (f,)/p (M) = 1

4o

1s of particular interest for the applications 1in approximation
theory. Some general "resonance" results on asymptotic behavior of
pn(m) Tollow immediately from Corollary 2.3.

COROLLARY 2.4, [12] Suppose W, {3 everyuhere dense in T .
and M, ts compact. Iy {p, )., 13 a sequence of continuous
seminorms on X with p,Mg) #Q, neN, then there ertists an
element f, ¢ M, such that '

lig*zup P, (7 /p, (M) 2 173, (6)

COROLLARY 2.5, [12) Under the hypotheses of Corollary 2.4, the
following properties 0f a sequence of seminorms L, are

equivalent:
@ Um p(f)=0, V7e m,

T+

) Um p M) =0 .

ek 8-



The following consequence of Theorem 2.1 gives an answer to
the question In what cases h(f) reaches its maximal possible
value 1 for an element f ¢ M, and for whole sequence of

seminorms h € H .

COROLLARY 2.6.[15] Let H ©be an unbounded famtly of
continuous seminorms. Adssume that the set ,
X.=4rfeX: imh(F)) =0)= Uuagn
H { fhl-0 } a>0 A
ts everywhere dense tn X . Then there exists an element Te € By

such that
Iim sup h(f,) = 1 . (7)
Thi-00

It follows from the main result in [14] that under the
hypotheses of Theorem 2.1 the set of elements I, € anH satisfying

(2) 1s residual in M, . Because of this Corollaries 2.2 - 2.4,

2.6 as well as thelr consequences in what follows, are valid for
residual sets of elements Ty o

It 1s also shown In ([14] that no result on residuglity is
possible if we try to construct an element Fe €M satisfying

lm Inf p (7,)/p (M) > 0. (8)

4w

More precisely, the following result has been obtained.

‘THEOREM 2.7.0141 Iet { p_}._. be @ sequence of continuous

seminorms on a Banach space X , M be q subset in X . If there
ertsts a subset Q <M being everywhere dense tnh M such that
1im p, A/, M =0 , YreQ, 7 (9)

it

then the set |
{7em:1mmep /o> 0)

7 n+o
ts of first Baire category.



3. APPLICATIONS TO SEMIGROUP OPERATORS
AND PEETRE’S K-FUNCTIONAL

Assume that T'= {I(f) : t 20} 1s a (C,)-semigroup on a

Banach space X . P.L. Butzer and W. Dickmels [1] posed the.
problem of presenting a criterion which delivers the existence of
non-optimal rates of convergence for semigroup operators, i.e. the
existence of elements [ ., € £ such that

! = 0(t%)
L # o(t™)

for each O0<a <1 ., They showed that non-optimal rates of
convergence exist 1f the Infinitesimal generator of 7T possesses a
~ sequence of elgenvalues A, With 1im |A | = @ and noted that it

4w

seemed plausible that (10) holds true for any semigroup T having

unbounded generator.
In [15] we valldated thls conjecture by presenting the

following more general and more precise result.

The modulus of continuity related to a (GO)—semigroup I on

X 1s defined by

Wp(fit) = SWp T - Ffly s FeX, t>0,
O<hsgt

LT N ( 1+0+) (10)

Let |
m (T) ={f € X1 Vte (0,11 w(fit) < wlt) } ,

Where w(f) 1s a positive contimuous function on ({0;1] with

1Im w(t) =0, (11)
t+0+

As a consequence of Corollary 2.6 we have

"THEOREM 3.1.([15] Suppose T - {3 a (C,)-semigroup with
unbounded generator, w(t) 1:3_ a postitive cont_tnuou.s functfion on
(0,1] sattsfytng voth (11) and : “ f



1im w(t)/t =, : ' - (12)
t+0+

Then there extsts an element f, ¢ W (T) such that

1im sup  w,(f,:0)/w(1) =1.
t+0+

It we set w(t)=t", 0<a<1, then obviowsly 7,

satisfies (10). :
Theorem 2.1 as well as Corollaries 2.2 - 2.5 can also be

applied to classes M (T) . The following result was obtained in

(151,
THEOREM 3.2, Iet T bea (C,)-semigroup on X. Suppose thai

w(t) {8 a posttive non-decreasing continuous function on (0, 1]
sattsfytng (11), (12) and

] w(@)t" <€ Kw@)tT . 0t <1 <1 (13)
with a constant K>0 . Iet {p_ )., Dbe a sequence of

continuous seminorms on X.
(@) If a sequence { f_ }.., < B (T) sattsftes (4) and

p,(f,) #0, neN, then there extsts an element f, € M (T) such
that (2) holds.

(0) If M,(T) ts compact and p (M (T)) #0, neN , then
there extsts an element f, € mm(:r') such that - '

Im sup p_(£,)/P, (M, (T)) 2 1/3.

4o

(¢) If mw('r) {s compact, then 1lim pn(mm(T)) =0 {f and

1140

only tf VI ¢ ’ﬂtw(T) Iim p_(f) =0 .

e

Similar results hold true for the setsrdermed through the
Peetre's K-functional.

Let U be a linecar manifold in Banach space X with ||,
is a given seminorm on U . The EK-functional 1s defined by

K, (F) = K, (Fi K3 0U) = int { gf—ggX# t|gly ¢ 8¢ U} s J€X .



For a given positive continuous function w(t) satlsfying (11) we
consider the set : -

£, @ = {re X : B, st , 00},

THEOREM 3.3.[12] Suppose w(t) {s a postiive non-decreasing
continuous functton on {0,w} satisfying (11), (12) and (13).
LT {prL }:;1 be a sequence of continuous seminorms on X.

(@) If o sequence {[f_ ).., cX (U) sattsfies (4) and

p (f,) #0, nenN, then there extsts an element [, € X, U) such

that (2) holds.
(b) If Xw(U) ts compact and p_ (X U)) #0, n ¢ N, then

there extsts an element [, ¢ Xm(U ) such that
1im sup p, (£, /P, (X, ,(U)) > 1/3.

4@

(¢) If X,W) {is compact, then iim p (X (U)) =0 1if and

N+

only & Vf ¢ X,) 1lim p (f) =0 .

4w

THEOREM 3.4 .[15]1 Suppose U (s everywhere dense in X, w(t)
{s o posttive continuous functton on {0,®) sattsfying (11) and
(12). If the condition | '

lm sup K J/0() = o
140+

holds, then there extsis an element [ € Xm(U) such that

Iim sup K, (7, )/w(t) = 1.
t+0+ ,

4, SETS X(8) |,

Let { F_)}>_. be a sequence of subspaces in a Banach space
X with - F_cF__. , neN and U F_1is everywhere dense in

nelN
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X. Denote E(fyF),=1nt {|f-8l; e F, ), EMME),=
=sup (B(fyF), s 7¢M), McX. For every positive
non-decreasing number sequence { g_)}._, With }Li.lil g, =0, we
detine |
X(e) = { 7€ X i E(F F )y S8, s nen } .

The following result was obtained In (9] through the use of
Theorem 2.1.

ThEoREM 4.1. Iet {p, )., be a sequence of continuous
seminorms on X,
(@) Ir o sequence {f ). , <X(e) satisfies (4) ond

p (f,) #0, neN, then there extsts an element [, € X(€) such

that (2) holds. - : .
(b) If all F_, neN, are finite-dimensional spaces and

p (X(€)) #0, neMN, then there exists an element f, € X(g)

such that
lim sup p (7,)/p, (X(€)) > 1/3. (14)

n+w

&) IT alk Fn , n €N, are fintte-dimensional spaces , then
lim p (X(e)) =0 tf and only 4f Vf ¢ X(e) " 1lim p (f) =0.

i+ n4®

Now we describe a speclal case of sequence {p_ )., for

which 1t 1s possible to replace 1/3 by 1 1In the righthand side
of (14).
Let U : X —X he a bounded linear operator. Denote

e, V), = sup{ 17- Uy ¢ e m} , McX.

The operator U 1s sald to be exact In W 1f e(®,U), =0 .

) THEQR;EM 4.2.09] Let {U_:n N} Dea sequence of bounded
linear operators mapping the Banach space X  into {tself with
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e(X(g), Un)X 20, neN ., If foreach me¢N there ea:tsts_a
number N = N(m) such that all Un s 2N, are eract in Fm .
then there exists an element [f.¢ X(€) satisfying |

1im sup |f,- Un(f*)gx / e(X(g), Un)X 2 f s (15)

n+ o

In the specific case X =(C , the Banach space of all
2n-periodic continuous functions with the uniform norm ﬂj’gc =
=max { [f(t)] ¢ T e€R Y}, and F =T , the space of
trigonometric polynomials of degree at most n, n =0, 1,... ,
Theorem 4.2 can be applied to the Investigation of the asymptotic
behavior of the remainder of approximation of functions [ € C(g)

by de la Vallée Poussin sums
™

0o = 7y 8, s O<ps<n, n=0,1,..

v=n-p
(where s, (f) 1s the w»-th partial sum of the Fourler series of

T Ia
COROLLARY 4.3.[91 4dssume that O0<p <n, n=0, 1,...

1

and 1im (n - p) = . Then there extsts a function f, € C(g)
nte
such that |
lim sup |7~ a0, o (L) /&), o, ), = 1.

4o

setting p. =0, n=40, 1,... we deduce a partial answer to
a problem raised by K.I.Oskolkov [20] who has shown that

i1

k(1
¥ Y
4, b €/ (PHT) < e(C(E)y 8 ), £ 4 . € ../ (V1)
and noted that the question of the existence of an (independent of

n ) function 7 ¢ C(g) such that
’ k)

I7- 8 (Nl 2 4, Ev /)y =0, 1,

remained open.
In [10] we managed 1o constmct such a functlon by apply.’mg a
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speclfic argument not using Theorem 2.1. Thus, the following
statement holds.

THEOREM 4.4, (101 There erists a function [f, € C(g) such

that
Um Inf |f,- 8 (F )l / eC(e)y, 8), > Q.

n+e

A multidimensional extension of this result was presented in
£13). :

6. ASYMPTOTIC BEHAVIOR OF APPROXIMATIONS OF INDIVIDUAL
FuNcT1ONs IN CLAsses W'H, .

Let LD, r=0,1,.. (L =L ), 1<p<w, be the
Banach space of 2n-periodic, i times continuously
differentiable functions f such that f("'” 1s absolutely
continuous (for r 21 ), the p-th power of j’(” 1s summable on
(0,2my for 1 <p<w, and 7"’ 1s essentially bounded for p =

() . .
=maX { I/ 7y oom) FOSESP)
P

let ¢", r=0,1,... (€°=0C) Dbe the Banach space of
2n-periodic, r times continuously differentiable functions T
with the norm |7y . : let T , n=20, 1,..., be the space of

trigonometric polynomials of degree at most n : let W"H;’
P=0, 1y00. ( WOH;’ =H, ), 1<p<o, bethe class of functions

=@, With the norm 7]

feL;, 1T<p<o, and fe¢C  for p=w, such that

o™, sa) e [0,n] , where o(g,t)] = sup { J8(- + 0) -
= g(-)gp : |8] <t} 1s the modulus of continuity of the function
g € Lp , and w(t) t 0, 1s a given modulus of continulty, 1.8,

a contim;bus semiadditive nondecreasing function sueh that
BaY. =4 .
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THEOREM 6.1. [4, 121 Suppose that w(t) {s a gtven modulus
of conttnutty sattsfytng (12). Iet {p_ )., be a sequence of

continuous semtnorms on L;, 1<p<w, or C (p=0),

ren .
(@) If a sequence {71 }2:1 c PF’"H: sati{sfies the conditions

1im §7, 4, = 0 (16)

4+

and p,(fy) #0, n €N, then there ertsts a function f, ¢ W"Hg

such that (2) holds.
(0) If p,(fy) =0, where [ (t) =1, and pn(wa;’) £0,

n €N, then there extsts a function f, ¢ W"H; such that
1im sup p, (f,) / P, (WH) > 1/3.
+@

() If p,(fy) =0, then 1lim pn(W’"H;’) =0 tf and only t7

4w

T 0
VJ’EWHP Im p (f) =0 .

4

It turned out that the condition (16) was satisfied in all
instances when p =~ was taken as a functional of the best

approximation or the remainder of some 1linear method of
approximation and the quantity pn(W’"Hg) Was known exactly or

asymptotically. It allowed us to obtain not only simpler proofs of
some well-kKnown results (see [19]) but the following new

assertions.

THEOREM 6.2. [4, 121 ILet w(f) be an upwards conver modulus

of continutty, r =0, 1,... . '
(a) If w(t) sattsftes (12), then there erists a function

f, € WH. such that |
lim sup B(f,, Tz, /EOWHS, 7). = 1,

4w 1
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(v) If condition (12) does not hold, then for each 7 ¢ WE°
lim E(fy T), /BOFHS, T). = 0.
% 1 1

THEOREM 6.3. [3]1 Iet w(t) be g given modulus of continuity

sattsfying (12), r =0, 1,... . There exists a function f, ¢ W'HS

such that ,
AT )]
1im sup |f,- 8 (Ll /e B 8), = 1.

4o

THEOREM 5.4, [3] Iet w(t) be an upwards conver modulus of
continutty satisfying (12), r =0, 1,... . There ertsts a function

7. € WH such that
lim sup |7,- 8, (F )M, / eWH, 8 ), = 1.,

n+e

A linear operator u:C— I 1s called a trigonometric
projectton 1f u (g) = g for each g¢ T .

THEOREM 6.5. [4] Let w(t )2 0 be an upwards conver modulus
of conttnutty satisfying (12), r=0, 1,... . For any arditrary
sequence of trigonometiric profections s C— T sn=0, 15.00. ,

there extsts a function f, ¢ WH, such that

T/2
limsup If,-u (Sl /n " Inn [ e@t/m) sintdt > 2, (47)

14w 8]

and equality holds {n (17) in the case that U =

A similar result was Independently obtained by P. Q. Runck,
J. Szabados and P. Vertesi (211 ,
Denote by Snm the space of 2w-periodic splines of order

meN of defect 1 with fixed equidistant nodes T, = tnn
t=0,1,..., n, In the interval [0, 2m) ; denote by Q. the
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set of all splines of order m of defect 1 with n free nodes
n- [0y 28) «- . . '

N. P. Rorneichuk [18] posed the problem of finding asymptotic
behavior of the best approximation of Individual functions by
splines with free or fixed nodes. The following four theorems are

devoted to the solution of the problem.

. THEOREM H.6. [4] ILet (i) be an upwards conver modulus of

contintidty, £ =0y 1,660 3 2P .
(@) If w(t) sattisfies (12), then there exists a function

7, € FH. such that
T 0
m sup E(fyy S5 /BN Hgy Sy = 1.

n+a 1

(b) If condttton (12) does not hold, then for each [ ¢ W H.
un B(fy S.0)p /BWH, S ). = 0.

T4 1

Theorem 5.6 1s a consequence of Theorem 5.1 . Proofs of the
next three theorems are obtained by other means.

THEOREM 5.7. [6] Let w(t) # O be an upwards convexr modulus
of continutty, r=Q, 1,... , m2r . There exrists a function

7, € WH. such that
T 0
1m  E(f,, S_), /BWH, S ), = 1.

i+

THEOREM 6.8. [6] ILet w(t) 0be an upwards conver modulus of
continutty satisfying (12), r =0, 1,... , Mm2r . There extsts a

functton f, € WH. such that
lim sup  E(f,, Q). / EWH,, Q ). = 1.

nte

THEOREM 5.9. [5] Suppose that w(f) = 1% with Q <a <1 .
There extsts a function f, € H. such that

lim int  E(f,, @, )/ By, @, ) > O .

4w
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let WHlQ, 0] , r =0, 1,... ( B°E°la, 0] = H®[Q,b] ), denote
the class of functions F ¢ C"la,b] having a given majorant w(t)
of the modulus of continuity of their  r-th derivatives.
Obviously, an analog of Theorem 5.1 holds true for the classes
WHE’la,bl .

Let b:(C'la,bl = R be a bounded linear functional on
¢"la,b] . A sequence of quadrature formulae

TP ()

0 = Q5 Ki B =] py @)y n=0, 1,00 (18)

1s defined by sequences of nodes X ={a<x _<ZI, <..ul
<z _ <0} and coefficlents P = {p;::) s B=0,..041,

L. T

V0w yy DLPEr s
Denote
R, My ) =sup { [0()-q, ()] :feMm}, M,

R,®, I, p) = 1f R, g,

n

a(X_ ) = max (xmn—a R A A R R EIILAE

A sequence of quadrature formulae g, 1s called to be
asymptotically optimal on the class I8 with respect to

coefticients 1f
lim R, (M, ¢ ) / R,(My X, p) =1 .

n+w

THEOREM 5.10. [2] Suppose that (t) is a given modulus of
conttnuity satisfying (12), r =0, 1,..., b (g a bounded linear

functtonal on C'la,d1 , {q }o_, ts a sequence of quadrature
formulae of type  (18). CIf Ttm aix ) =20 and

4o
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R, (F"H°la,0], X, ) #0, n=0, 1,..., then there erists a
functton f, ¢ WH [a,b]l such that
Umsup |0(7,) - q ()] / R, H[a,0], X, p) > 1, (19)

4w

and equality holds in (19) tn the case that the sequence { q_ ). _.

is asymptotically optimal on the class W H'la,bl with respect to
coefricients.

An Infinite triangular matrix ¥ = (7, ) , -1 £ Ty $& . <

a“<%n$!, =0, 1,... defines a Lagrange Iinterpolation
process
T
I (M, 1, ) = Ekzof(xk”) Len s T)
n
1, (M, t) = ‘—I,;:o(t -z, )/ @, - T,
ik

An Interpolation process Ln(ﬂ) is sald to be convergent ai a

potnt t ¢ [-1,1] (untiformly convergent on [-1,1]1 ) in the class
McCl-1,11 1f for any f e M Um |f(t) - L (¥, fy 1)] =0

n+m

(1im 7 - L&y Dlgroq.q;=0)

n+e

The following criterion of convergence of Interpolation
processes in classes W H'[-1,1]1 1s a consequence of Corollary

2.8,

TuEoREM 5.11. [71 Tet w(t) De a given modulus of continuity

satisfying (12)y, r =0, 140 .
(@) L () s convergent at the point t ¢ [-1,1] tn the

class W H’l-1,11 {f and only if

lim sup { IF(t) - L ¥, 7y 1) : f e WHI-1,11} = 0.

n+w
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(D) L () ts uniformly convergent on [-1,1] {n the class
WE°-1,11 {f and only if

1im sup {(If - LBy Mgy o, ¢ 7 € FE-1,11) = 0.

n+ow

Denote
ﬁn(ﬁ{) = min [arccos :Il‘hn - arccos xk_hnl sy N EN,
15kEn

By applying Theorem 5.11 we obtained the following extension
of a Vertesi's result [22].

THEOREM 5.12. [T] Iet w(t) be a given modulus of continuity
satisfying (12), r =0, 1,... . Stuppose that
IimInt no_(4) > O.

s ]

Then
(@) L (¥) ts convergent at the point ¢ ¢ [-1,1] in the

class WH'[-1,11 1{f and only {f

- (1__3:2 )rfz (1_32 )112
X kn [ ___"%n' ] i’
e e s LSURER)

(b) L () ts untformly convergent on [-1,1] in the class
WH[-1,11 {f and only {f-

n (1_22 )I‘IZ (1_3:2 )1f2
1im  max S iy wl kg 1., 1) = Q.
nte  -15ts1 Lr=o #e L L J | Len s |

P. Vertesi [22] presented such a theorem in the case of r =0
for matrices ¥ consisting of zeros of Jacobl polynomials.
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6. ACCURACY OF SEMINORM INEQUALITIES

Iet X be a Banach space, {p, )., and {w_}>_ . be two
sequences of continuous seminorms on X . ILet us consider the
quantity 2 = % X, py W) = sup {p, ) /0w () :reX,
0. (f)#0), neN . Under the assumption that O<z <,
nemN, a sequence of elements f, €X is wsaid to De

(asymptotically) extremal for aen(X, P, W) 1f
m p (7)) /20 () = 1.

T+
The following theorem that was proved by using Theorem 2.1
investigates asymptotlc behavior of the ratio
() /wl(f), n—oo, (20)
for individual elements [f ¢ X not depending on n .

THEoREM 6.1. [11]  Suppose that O <z (X, p, W <o,
nemnN, and there erists a positive sequence of real numbers o =
= {«_ )., such that the followtng two conditions hold.

A. The set X, a) = {feX:llm () /a = 0} ts

et 2]

everywhere dense in X .
B.  There ewtsts an extremal sequence  { f_ ). _ for

® (X, p, W) such that
11m Gy lgfﬂ,ﬁX/(‘u‘n.(fn) = U

ntw

Then there extsts an element f, € X such that
limsup p (7)) /2 0 (f,) = 1.

4o

There are many consequences of this result. First of all, 1t
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can Dbe applied to the study of the accuracy of Jackson type
inequalities. ILet Y™ be one of the spaces Ipv1<qgso, C"

P=0s Tyouuy (g )y, 8€Y, 1t ¢€[0, ], bethe Y-modulus of
continuity, i.e. (g, t)y=w(g t), 1f Y=I_, 1€qg<a,
and w(g, t)y = wig, i), 1if Y=0C. Tor any positive number
sequence 1 — 0 (n—w) we conslder the sequence of

(r])

contimuous seminorms & (f) = @(f' ", 1), on ¥

THEOREM 6.2. [11]1 et Y™ e L; , 1<q¢g<o or ¢
r=0, 1y..., {p, )., Dbe an arditrary sequence of continuous
seminorms on Y , w () = m(.f‘("), 'rn.)y v 1,20, 1, —0
(n— o). Suppoge that O <z (Y, p, w) < ® and there erists
an extremal sequence { f_ }-_, for = (Y, p, w) such that

un 7, 1y /0, 1), = 0.

Tt
Then there extsts a function 7, € Y" such that
Umsup p (7,) /2 w(f, ,7) = 1,

Tt

According to a Korneichuk's theorem, for any s ¢ C
B(7y T)e < olf, wn), (22)

while for € >0 for each nem there exists a function
I e € C such that
Bl e To > [1-mm-e])uw, .\ vy, .

By applying Theorem 6.2 we find out that mequallty (22) can not be
improved even for individual functions.



COROLLARY 6.3. [8] There extsts a function f, € C such that
1im sup E(Fy T )s / 07, m/n =1 s (23)

n+o

In a similar mamner we deduce the accuracy of some other
inequalities.
CoOROLLARY B.4. [11) There exiats @ function j’* € L‘2 auch

that
1im sup E(f,, T,), / @l W), = 142,

n+w

COROLLARY 6.5, [11] Foreacheodd r =1, 3, 5, ... there

exists a function f, € L7 such that
lim sup n" E(f,, ), / 0(f, el wn), = K /2,
TL+w

where ?Cr ts the Favard constant.

COROLLARY 6.6. [111 There erists a function f € C such

that
1im sup |f,~ s (P, / @, 3{2if1) Jolnn = 2/

nte

Let 7_(f) be the trigonometric polynomial of degree at most

n-1 that Interpolates f ¢ C at points (2e-1)m/(2n-1)
B=1 yueey 20T 4 it 1 be the Lebesgue constant of the

corresponding interpolation process.

CorOLLARY 6.7. 111 There extsts a function f, € C such

that
Im sup |7, T (Pl / 1t ) o7, (?_n ) Jo = 112,

T4
The last Corollary Improves a result of 0. Kis (171,

Returning to the Inequality (22), we should point out the
following result. .
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THEOREM 6.8. [81 For any Jfunciion [ ¢ C
lim inf BE(f, T ),/ Oy Wn), < 1/2

T
n+w
and there erists a function f, € C such that
Im Inf BE(f,, T.)), / (f,, ™0,

e

1/2 .

Comparison of Theorem 6.8 and Corollary 6.3 shows that there
exists a gap between upper and lower limits in the case. The
situation reverses 1f we consider Jackson Inequality for

differentiable functions f ¢ C° , where r 1is odd,
Bty 1), < (Ksen) o™, wmg .

THEOREM 6.9, [8] Foreachodd r =1, 3, 5, ... thereerists

a function f, € G such that
n 1" E(f,, T /0@t wh), = K /2.

nte

Let us consider the Lebesgue's inequality
17 -8, < (47 Imn + 00) ) EG Ty, o FeC. (24)

As an answer to the question whether 1t 1s accurate for
individual functions, we have obtained the following general
theorem which is a consequence of Theorem 6.1,

Let (F, }$:1 be a sequence of subspaces in a Banach space
X with F cF ., nedN and U F  1s everywhere dense in X

nelN

but not equal 1o X .

 THEOREM 6.10. (111 Let {p_ )} _, bean arbitrary sequence
of continuous seminorms on X
& = sup-{p, () /E(UHWE )yt FE€XNE } .

If 0<® <@, ne¢n , then there exists an element 7, ¢ X such
that : ,



that

e
-
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i

1n sup p_(7,) /& E(f F )y = 1.

n+o

COROLLARY 6.11. [11] There erists a function f, € C such

lmsup |7~ s, (F ),/ B(Zyy T Inn = 417,

n+w®
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