Interpolation by Cubic Splines
on Triangulations
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Abstract. We describe an algorithm for constructing point sets which
admit unique Lagrange and Hermite interpolation from the space S?}(A)

of C' splines of degree 3 defined on a general class of triangulations A.
The triangulations A consist of nested polygons whose vertices are con-
nected by line segments. In particular, we have to determine the dimension

of Sg(A) which is not known for arbitrary triangulations A. Numerical
examples are given.

§1. Introduction

In the literature, point sets which admit unique Lagrange and Hermite in-
terpolation from spaces Sqr(A) of splines of degree ¢ and smoothness r were
constructed for crosscut partitions A, in particular for A'- and A2%-partitions.
Results on the approximation order of these interpolation methods were also
proved. (Because of space limitations, we refer to the references of our paper
[5] in this volume.) Hermite interpolation schemes for Sql(A), q > 5, where A
is an arbitrary triangulation, were given in [1, 3].

An inductive method for constructing Lagrange and Hermite interpola-
tion points for S;(A), g > 5, where A is an arbitrary triangulation, was de-
veloped in [2]. Here, in each step, one vertex is added to the subtriangulation
considered before. For ¢ = 4, this method works under certain assumptions
on A.

The most complex case is ¢ = 3, since even the dimension of S3(A) is
not known for arbitrary triangulations A. In this paper, we develop Lagrange
and Hermite interpolation methods for S3(A). The triangulations A consist
of nested polygons whose vertices are connected in a natural way. The inter-
polation points are constructed inductively by passing through the vertices of
the nested polygons, where in contrast to [2], the choice of these vertices is
unique.
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Fig. 1. Triangulation A (nested polygons).

§2. Main Results

Let A be a regular triangulation of a simply connected polygonal domain 2
in R*. Given an integer ¢ > 2, we denote by Si(A) = {s € C'(Q) : s|r €
II, for all T € A} the space of bivariate splines of degree ¢ and smoothness
one (with respect to A). Here I, = span{z®y”® : a, 3 > 0, a+ 3 < ¢} denotes
the space of bivariate polynomials of total degree ¢. We investigate the following
problem. Construct sets {z1,...,z4} in Q, where d = dim S;(A), such that
for each function f € C(T), a unique spline s € S;(A) exists which satisfies
the Lagrange interpolation conditions s(z,) = f(z,),v = 1,...,d. If we consider
not only function values of f but also partial derivatives, then we speak of
Hermite interpolation conditions.

The Class of Triangulations. We consider the following general type of
triangulations A. The vertices of A are the vertices of closed simple polygons
Py, Py,..., P, which are nested and one vertex inside P,. This means that
Q-1 C Q, where Q, is the closed (not necessarily convex) polyhedron with
boundary P, = 0,...,k, and A is a triangulation of Q := Q}, (see Figure 1).
To be more precise, we note that the vertices of P, are connected by line
segments with the vertices of P,y1, 0 =0,...,k —1. On the other hand, for
each closed simple polygon P,, there is no additional line segment connecting
two vertices of Py, =0,...,k. In order to construct interpolation points for
S3(A), we assume that the triangulation A has the following properties:
(T1) Each vertex of P, is connected with at least two vertices of Pyyq1,p =
0,...,k—1.

(T2) There exist vertices w, of P,,u =0,...,k, such that w, and w,4, are
connected, and each vertex w, is connected with at least three vertices of

PM+1,,u:0,...,k—1.

Remark 1. (i) Since the polygons P, grow with increasing index p, it is
natural to assume that the number of vertices of P,y is greater than the
number of vertices of P,,u = 0,...,k — 1. Then it is natural to connect
the vertices of the polygons in such a way that the properties (T'1) and (72)
are satisfied. (¢2) Moreover, the properties (T'1) and (72) of A remain valid
if A is deformed, i.e., the location of the vertices of A are changed but the
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Fig. 2. Degenerate edge, respectively singular vertex.

connection of the vertices remain unchanged. (In other words, the graphs of
the triangulation A and the deformed triangulation are the same.)

Decomposition of the Domain. In order to construct interpolation points,
we decompose the domain §2 into finitely many sets Vo C V3 C --- C Vi = Q,
where each set V; 1s the union of closed triangles of A,¢ =0,...,m. Let Vj be
an arbitrary closed triangle of A in 3. We define the sets V4 C --- C V,,, by
induction according to the following rule: If V;_; is defined, then we choose a
vertex v; of A with the following property: Let T;1,...,T; n;(n; > 1) be all
the triangles of A with vertex v; having a common edge with V;_;. (Since A
satisfies property (T'1), we have n; < 2.) We set V; = V;_4 UTi’l U... UTi’ni.
(Note that we choose the vertex v; in such a way that at least one such triangle
exists. )

The vertices v;,2 = 1,...,m, are chosen as follows. After choosing V4 to
be an arbitrary closed triangle of A in €y, we pass through the vertices of
Py in clockwise order by applying the above rule. (It is clear that the choice
of these vertices is unique.) Now, we assume that we have passed through
the vertices of P,_i. Then w.r.t. clockwise order, we choose the first vertex
of P, greater than w, which is connected with at least two vertices of P,_;.
Then we pass through the vertices of P, in clockwise order until w, and pass
through the vertices of P, in counterclockwise order until wj by applying the
above rule. (Here wj denotes the vertex next to w, in clockwise order and w,,
denotes the vertex next to w, in counterclockwise order.) Finally, we choose
the vertex w,. (It is clear that the choice of the vertices is unique.) In this
way, we obtain the sets Vo C V3 C ... C V,,, = (L.

Construction of Interpolation Sets. The choice of interpolation points
depends on the following properties of the triangulation A.

Definition 2. (i) An interior edge e with vertex v of the triangulation A is
called degenerate at v if the edges with vertex v adjacent to e lie on a line.
(11) An interior vertex v of A is called singular if v is a vertex of exactly four
edges and these edges lie on two lines. (1i1) An interior vertex v of A on the
boundary of a given subtriangulation A' of A is called semi-singular of type 1
w.r.t. A' if exactly one edge with endpoint v is not contained in A" and this
edge is degenerate at v. (iv) An interior vertex v of A on the boundary of
a given subtriangulation A" of A is called semi-singular of type 2 w.r.t. A’ if
exactly two edges with endpoint v are not contained in A" and these edges
are degenerate at v. (v) A vertex v of A is called semi-singular w. r. t. A" if
v satisfies (i11) or (iv).
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Fig. 3. Semi-singular vertex.

Fig. 4. The set V; \ V;_1.

Now, we construct interpolation sets for S3(A) inductively as follows.
First, we choose interpolation points on Vy and then on V;\V;—1,i =1,...,m.
In the first step, we choose 10 different points (respectively 10 Hermite inter-
polation conditions) on Vj which admit unique Lagrange interpolation by the
space II3. (For example, we may choose four parallel line segments [, in V;
and v different points on each [,,v = 1,2, 3,4.)

Now, we assume that we have already chosen interpolation points on
Vi—1. Then we choose interpolation points on V;\V;_; as follows. By the above
decomposition of 2, V;\ V;_1 is the union of consecutive triangles T; 1, ..., T} 5,
with vertex v; having common edges with V;_y. We denote the consecutive
endpoints of these edges by vio,vi1,...,0in,. Moreover, the edges [v; ;,v;]
are denoted by e; ;,7 =0,...,n; (see Figure 4).

The choice of interpolation points on V; \ V;_y depends on the following
properties of the subtriangulation A; = {T' € A : T C V;} at the vertices
Vi0s.-., Vit (1) €, is non-degenerate at v; ;. (1) €; ; is non-degenerate at
v; j and in addition, v; ; is semi-singular w.r.t. A;.

For j € {0,n;}, we set ¢; ; = 1 if (17) holds; and ¢; ; = 0 otherwise. For
0 < j < n4, weset ¢; j = 11if (¢) holds; and ¢; ; = 0 otherwise. Moreover, we
set ¢; — Z?;o ¢i,; and note that 0 < ¢; < 3. For Lagrange interpolation, we
choose the following points on V; \ V;_1: If ¢; = 3, then no point is chosen.
If ¢; = 2, then we choose v;. If ¢; = 1, then we choose v; and one additional
point on some edge e; ; with ¢;; = 0. If ¢; = 0, then we choose v; and
two additional points on two different edges. For Hermite interpolation, we
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require the following interpolation conditions for s € S3(A) at the vertex
vi: If ¢; = 3, then no interpolation condition is required at v;. If ¢; = 2,
then we require s(v;) = f(v;). If ¢; = 1, then we require s(v;) = f(v;) and

ds N _ _of 4 o : L .
Bei; (vi) = m(m), where e; ; 1s some edge with ¢; j = 0. If ¢; = 0, then we

: 0 2] . . .
require s(v;) = f(v;), g—;(vi) = %(vi) and g—;(vi) = a—i(vi). (For simplicity,
we have denoted the derivative in direction of a unit vector parallel to the edge

ei,; by %) By the above construction, we obtain a set of points for Lagrange

interpolation (respectively a set of Hermite interpolation conditions).

Theorem 3. If the triangulation A satisfies the properties (T'1) and (T2),
then there exists a unique spline in S3(A) which satisfies the above Lagrange
(respectively Hermite) interpolation conditions. In particular, the total num-
ber of interpolation conditions is equal to the dimension of S3(A).

Proof: Let s € S3(A) be a given spline which satisfies the homogenous
Lagrange (respectively Hermite) interpolation conditions. We will show that
s = 0 on © and that the total number of interpolation conditions on €2 is equal
to the dimension of S3(A).

First, we show by induction that s = 0 on V;,2 = 0,...,m. It is clear that
the interpolation conditions on Vy imply s = 0 on V. Now, we assume that
s =0 on Vi for some 1 € {1,...,m} and consider V;. Set €; ; = [vi j—1,vi ;]
and p; ; = s|7,; € II3,j = 1,...,n;. For simplicity, we omit the index 7 of
Vi, Vi j, €45y €45y Li g, pi; and n;. Since s € Cl(Q), 1t follows from the induction
hypothesis (i.e., s = 0 on V;_y) that for all y € {1,...,n},

o o
0 ama 9P
6%]-6%]-_1 6%]-6%]-
foralla > 0.8 =0,1 and o + 7 < 3. We consider the following cases.

=0 on ¢ (1)

Case 1. ¢; = 0. For Lagrange interpolation, we may assume that the three
interpolation points are chosen on the edges ey and ey. Since py 1s zero at
these points and p; satisfies the zero properties (1), it follows that p; = 0.
The same arguments hold for Hermite interpolation. Since s = 0 on 7} and
s € C'(Q), we obtain py(v) = 0, %(v) = 0, and g%j(v) = 0. This together
with (1) for p, implies p; = 0, and therefore s = 0 on V;.

Case 2. ¢; = 1. First, we consider the case ¢;; = 1, where n = 2. In this
case €1 1s non-degenerate at v;. Hence, we have e1 = 71€1 + 7262, where

1,72 € R\ {0}, Thus, 52 (01) = 715255 (01) + 125555 (v1). It follows

from (1) that gzzi (v1) = 0. Since v is an interpolation point, we obtain that

p1 = 0 on e1. Analogously as in Case 1, we conclude s =0 on V;.

Now, we consider ¢; o = 1, i.e., vy is semi-singular of type 2 w.r.t. A,
and eg is non-degenerate at vg. Let e be the edge outside of A; attached to
vy, which is not lying on the same line as eg. Denote by Tj,j =1,...,3,
the triangles with vertex vy outside of A; in counterclockwise order and set
pj = 3|Tj €ll3,;=1,...,3. Since s =0 on V;_1, we have

9’ ps P B 9%pa B 9% ps

Bedeg ") = Betes ) T T Bedi—ea) ) T Be)t(—eg) ")

=0.
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Since ey is non-degenerate at vy, analogously as above, it follows from (1)

that gzg; (vg) = 0. As in the above case, we conclude from the interpolation
conditions that s = 0 on V.

Finally, we consider ¢; , = 1, 1.e., v, is semi-singular w.r.t. A; and e,
is non-degenerate at v,. We may assume that v, is semi-singular of type 1
w.r.t. A, since the remaining case can be treated analogous to the above
case ¢;9 = 1. Let e be the edge outside of A; attached to v,, denote by
Tj,j = 1,2, the triangles with vertex v, outside of A; in clockwise order and
set p; = 5|TJ € Il3,5 =1,2. Since s =0 on V;_1, we have

azpn 82]51 82]52

Oele,, (U") - m(vn) = _m(vn) =0.

Since e, is non-degenerate at vy, analogously as above, it follows from (1)

2
that 325" (vn) = 0. As in the above case, we conclude from the interpolation
conditions that s = 0 on V;.

Case 3. ¢; = 2. Here, we have three cases which can be treated by analogous
arguments as in Case 2.

Case 4. ¢; = 3. By dnalogoub arguments as in Case 2, we obtain gzm( 0) =0,

22‘:1( 1) = 8262 2(vy) = 0. It is well known (cf. [4], p. 124) that each
univariate polynomial p of degree 3 on an interval [a, b] satisfies 6p(a)+ 2(b —

a)p'(a) = 6p(b) — 4(b — a)p'(b) + (b — a)?p" (). Tt follows that

dp .
3p1()+a]61()20, j=0,...,2, (2)
€5

where «; is the length of e;,7 =0,...,2. If ¢g and ey lie on a line, then it is

easy to see that these equations imply

apl apl 8291

—(v) =0. 3
p1 (U) 860 861 862 (U) ( )

If ey and e; do not lie on a line, then we have sin(6y + 62)e; = sin(6;)ey +
sin(6y ez, where 6; € (0, ) is the angle in T},7 = 1,2 at v. Thus,

sin(6; +92)gfe’1( )_sm(ez)gfe’;( )—|—81n(91)ge2( ).

This and (2) lead to a homogenous linear system with corresponding deter-
minant 3(—aqasy sin(fy ) — agaq sin(f ) + agaz sin(6y + 63 )). It is obvious that
for 6y + 6, > m, this determinant is nonzero. Moreover, this also holds for
01 + 6, < 7, since the area of the triangle with vertices v, vy, and vy is different
from the sum of the areas of the triangles Ty and T5. It follows that (3) holds
in all cases. Now, analogous to Case 1, we obtain s = 0 on V;. This shows

s=0on V.
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Finally, we show that the total number M(A) of interpolation conditions
for S3(A) is equal to the dimension of S3(A). It follows from the above proof
that dim S3(A) < M(A). On the other hand, it was shown in [6] that L(A) =
3VB(A)+2Vi(A)+o(A)+1 < dim SP}(A), where VB(A) (respectively Vi(A))
is the number of boundary (respectively interior) vertices of A and o(A) is the
number of singular vertices of A. Thus, it remains to show L(A) = M(A).
We prove by induction that L(A;) = M(A;),: = 0,...,m. Since we have
chosen dimII3 = 10 interpolation conditions on Ay, L(Ag) = M(Ay). We
assume L(A;_1) = M(A;—y) and show L(A;) = M(A;). If n; = 1, then
VB(A,) = VB(Ai—l) +1, V](Al) = V](Ai_l). Thus, L(Al) = L(Ai_l) +3. By
the choice of interpolation conditions, we have M(A;) = M(A;—1)+ 3. Thus,
L(Az) = J\I(Ai). If n; = 2, then VB(AZ) = VB(Ai—l)) V[(Al) = V[(Ai_l)—l—l.
Thus, L(A;) = L(Ai—1) + 2. If ¢;; = 1, then by the choice of interpolation
conditions, M(A;) = M(A;_1)+2. Thus, L(A;) = M(A;). Now, we consider
¢in = 0. We assume that v;; is not singular. (Note that by property (T1)
of A, the vertex inside P, is the only vertex which may be singular.) We
claim that there exist a unique integer ¢p < 7 — 1 and 5 € {0,...,n;,} such
that v; 1 = v;, 1s semi-singular w.r.t A;; and ¢;, ; = 1. First, we note that it
follows from properties (T1) and (T2) of A that v;, := v, 1 is not semi-singular
w.r.t. A;,. We consider two cases.

Case 1. Suppose the vertices v; ; and v;_ are connected by a line segment
€.

If the edges €; 1 and e do not lie on a line, then ¢g =:¢—1 and ¢;,1 = 1. (In this
case, v; 1 is semi-singular of type 1 w.r.t A;_q.) If the edges ¢; 1 and e do lie on
a line, then ¢y =1 — 2 and, since v; 1 is not singular, Cigni, = L. (In this case
v; 1 1s semi-singular of type 2 w.r.t A;_,.) Moreover, v; ; is not semi-singular
w.r.t A;,, where v;, := v; » since at least three edges of A; outside of A;, are
attached to v; 1.

Case 2. Suppose the vertices v;; and v;—» are not connected by a line
segment.

Let e be the edge which connects v; 1 with the vertex on its polygon in counter-
clockwise order. If the edges e; ; and e do not lie on a line, then we also have
1o =¢—1and ¢;; 1 = 1. Moreover, since €; is non-degenerate at v; 1, it follows
that v; ; is not semi-singular w.r.t A;,, where v;, := v; 5. If the edges ¢; ; and e
do lie on a line, then v; 1 1s semi-singular of type 2 w.r.t A;,, where v;, := v, 2,
and ¢;, 0 = 1. Moreover, in this case, v; 1 1s semi-singular of type 1 w.r.t A;_q,
but ¢;—1,1 = 0. This shows that if ¢; 1 = 0 (and v, 1 not singular), then there
exists a unique integer 19 < ¢ —1 such that ¢;, ; = 1. By the choice of interpo-
lation conditions, it follows that M(A;) = (M(A;—1)—1)+3 = M(A;—1)+2.
Thus, L(A;) = M(A;). This proves Theorem 3. O

If a triangulation consists of subrectangles by adding one diagonal (of
the same direction), then we speak of a A'-partition. The next result on
A'-partitions which are deformed (see Remark 1) follows from Theorem 3.

Corollary 4. Let A be a deformed A'-partition. Then there exists a unique
spline in S3(A) which satisfies the Lagrange (respectively Hermite) interpola-
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tion conditions obtained by the above method.

Numerical examples. We interpolate Franke’s test function (see [5] in this
volume) by splines in S3(A), where Q is somewhat larger than [0, 1] x [0,1]
and A is a uniform triangulation of  consisting of nested polygons. By using
3747 (resp. 14403) interpolation points, we obtain an error of 1.61 * 10~*
(resp. 2.03 % 1077) in the uniform norm. (In the case of non-uniform A, our
method may be modified. If V; \ V;_1 is a convex (respectively non-convex)
quadrangle with one diagonal, then the second diagonal is added (respectively
one triangle of the two is subdivided into three subtriangles). In this case,
the interpolation points are obtained easily by combining the methods in this
paper and in [5].) The interpolating splines are computed by passing through
the triangles and by solving several small systems instead of one large system.

Finally, we note that our basic principle of passing through the vertices
of the nested polygons of A can also be applied to the space Sql(A), g>4,1n
combination with the algorithm for constructing interpolation points in [2].
Then, in contrast to [2], the choice of the vertices is unique.
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