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Abstract

We study the behaviour of the optimal shape parameter for the meshless Gaus-
sian RBF-FD method with multipoint stencils on irregular centres for Poisson
equations with smooth solution. Numerical experiments show that its value does
not depend significantly on the density of the centres. Therefore an algorithm
based on comparison of RBF solutions on two nested sets of centres effectively
computes a near-optimal shape parameter and helps to obtain more accurate so-
lutions of the PDE than those computed by linear finite elements on the same
discretisation centres and with comparable density/bandwidth of the system ma-
trix.

1 Introduction

In this paper we continue investigation of the multipoint stencil RBF-FD method intro-
duced in [3]. Recall that RBF-FD is a generalised finite difference method for numerical
solution of partial differential equations based on numerical differentiation stencils on
irregular centres arising from interpolation with radial basis functions. This is a promis-
ing, truly meshless approach that has only recently become a research subject, see for
example [1, 8, 10, 11, 13]. Even though little has been done on its theoretical justifica-
tion, numerical evidence suggests that this method produces highly accurate solutions,
comparable with and often even outperforming the accuracy of the well established mesh
based methods for the same number of degrees of freedom and density of the system
matrix.
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The ordinary (single point) RBF-FD method for Poisson equation discretises the
Laplace operator at a centre x0 by evaluating the RBF interpolant s satisfying s(xi) =
u(xi), i = 0, . . . , n, where {x1, . . . , xn} is a set of centres close to x0,

∆u(x0) ≈ ∆s(x0) =

n
∑

i=0

wiu(xi).

The stencil w = [w0 . . . , wn] depends only on the differences x1 − x0, . . . , xn − x0 and on
the choice of RBF. Hermite RBF stencils [13] rely on Hermite RBF interpolants sH and
corresponding numerical differentiation formulas of the type

∆u(x0) ≈ ∆sH(x0) =

n
∑

i=0

wiu(xi) +

n
∑

i=1

w̃i∆u(xi).

Multipoint stencils are obtained by discretising a linear combination of shifted Lapla-
cians Du :=

∑ℓ
k=1 σk∆u(· − x0 + yk), where y1, . . . , yℓ are collocation centres close to

x0,
ℓ

∑

k=1

σk∆u(yk) = Du(x0) ≈ Ds(x0) =

n
∑

i=0

wiu(xi).

To some extend, multipoint stencils resemble discretisations arising (after applying a
quadrature rule) from the finite element method.

In [3] we suggested meshless algorithms for the selection of stencil supports {x1, . . . , xn}
for RBF-FD methods as well as for the adaptive local refinement of the sets of centres
and presented numerical experiments on typical test problems usually employed for as-
sessing adaptive finite element methods. The performance of single point and multipoint
stencils was comparable in these experiments. However, in [3] we did not address the
question of optimal shape parameter c, which is known to be crucial for RBF methods,
see [5, Chapter 17] and references therein. In [3] we adopted a simple strategy of choos-
ing a ‘safe’ value as small as possible such that the RBF matrices used to compute the
stencils w are still numerically nonsingular. Recent paper [4] is devoted to the optimal
shape parameter for the standard single point stencils in the case of Gaussian RBF
ϕ(r) = e−c2r2

, where the stencils can be computed for arbitrary c ≥ 0 by using QR
method of [6, 7].

In this paper we investigate optimal shape parameter for the multipoint stencils.
Similar to [4], numerical evidence is presented that the optimal shape parameter is
different for different test problems, and therefore cannot be estimated from the distri-
bution of centres alone. The accuracy achieved with optimal shape parameter is often
several times higher than the one with a ‘safe’ value, or in the ‘flat limit’ case of c = 0.
We observe that for non-adaptive (‘quasi-uniform’) centres the optimal shape parameter
does not depend significantly on the density of the centres, and therefore the multilevel
algorithm for the estimation of near-optimal shape parameter introduced in [4] performs
very well for the multipoint stencils. Moreover, in most test cases multipoint stencil so-
lutions are significantly more accurate than their single point counterparts, which may
make them preferable for certain applications even though they are more expensive to
compute.
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The paper is organised as follows. In Section 2 we discuss general discretisation
methods for the Dirichlet problem obtained with the help of numerical differentiation
formulae, and derive both single point and multipoint RBF-FD stencils. Section 3 is
devoted the results of the numerical tests on the optimal shape parameter, and Section 4
presents an algorithm for the computation of near-optimal shape parameter and results
of its numerical testing.

2 Single point and multipoint RBF-FD methods

2.1 Discretisation of Poisson equation on irregular centres

Let D be a linear differential operator, and X = {xi}
n
i=0 a fixed irregular set of centres

in R
d. A linear numerical differentiation formula for the operator D,

Du(x) ≈

n
∑

i=0

wi(x)u(xi), (1)

is determined by the weights wi = wi(x). The vector w = [w0, . . . , wn]T is called stencil.
In the finite difference method stencils are used for the discretisation of partial differ-

ential equations. Consider the Dirichlet problem for the Poisson equation in a bounded
domain Ω ⊂ R

d: given a function f defined on Ω, and a function g defined on ∂Ω find
u such that

∆u = f on Ω, (2)

u|∂Ω = g. (3)

This problem can be discretised with the help of differentiation formulae (1) as follows.
Let Ξ ⊂ Ω be a finite set of discretisation centres, ∂Ξ := Ξ∩ ∂Ω and Ξint := Ξ \ ∂Ξ.

Assume that for each ζ ∈ Ξint a set Ξζ ⊂ Ξ is chosen such that ζ ∈ Ξζ and

Ξ =
⋃

ζ∈Ξint

Ξζ . (4)

For each ζ ∈ Ξint, choose a linear numerical differentiation formula for Laplace operator
∆,

∆u(ζ) ≈
∑

ξ∈Ξζ

wζ,ξu(ξ), (5)

with stencil [wζ,ξ]ξ∈Ξζ
, and replace (2)–(3) by the system of linear equations

∑

ξ∈Ξζ

wζ,ξû(ξ) = f(ζ), ζ ∈ Ξint, (6)

û(ξ) = g(ξ), ξ ∈ ∂Ξ. (7)

If (6)–(7) is nonsingular, then its solution û : Ξ → R can be compared with the vector
u|Ξ = [u(ξ)]ξ∈Ξ of the discretised exact solution of (2)–(3).
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A standard finite difference method is obtained from the above if we take Ω ⊂
R

2 to be a square domain, Ξ a uniformly spaced grid, and (5) the classical 5-point
differentiation formula for the Laplacian.

A more general scheme is obtained if we introduce a different set Θ ⊂ Ω of collocation

centres to replace Ξint in (6):
∑

ξ∈Ξθ

wθ,ξu(ξ) = f(θ), θ ∈ Θ, (8)

where Ξθ and wθ,ξ, ξ ∈ Ξθ, define a suitable numerical differentiation formula for the
centre θ,

∆u(θ) ≈
∑

ξ∈Ξθ

wθ,ξu(ξ). (9)

Then the system (8),(7) is another discretisation of the problem (2)–(3).
If the cardinality of Θ is greater than that of Ξ, then the linear system (8),(7) is

overdetermined, and an approximate solution can be found by the least squares method,
for example. Alternatively, the number of equations can be reduced by using local
averages of the equations in (8), leading to the following generalised finite difference
method.

For each ζ ∈ Ξint choose a set Θζ ⊂ Θ and weights σζ,θ ∈ R, θ ∈ Θζ, to define a
linear combination of shifted Laplacians on Θζ , and choose a numerical differentiation
formula

∑

θ∈Θζ

σζ,θ∆u(θ) ≈
∑

ξ∈Ξζ

wζ,ξu(ξ), (10)

with support Ξζ and weights wζ,ξ, ξ ∈ Ξζ . Then a discretisation of (2)–(3) is given by
the following linear system

∑

ξ∈Ξζ

wζ,ξû(ξ) =
∑

θ∈Θζ

σζ,θf(θ), ζ ∈ Ξint; û(ξ) = g(ξ), ξ ∈ ∂Ξ. (11)

It turns out that the finite element discretisations of (2)–(3) can be written in the
form (11) if the load vector is evaluated by a quadrature rule. Indeed, consider for
example, the linear triangular finite elements. Given a conforming triangulation of a
polygonal domain Ω, we denote by Ξ the set of vertices of all triangles, and by ϕξ,
ξ ∈ Ξ, the hat functions. The finite element approximation is sought in the form
û(x) ≈

∑

ξ∈Ξ û(ξ)ϕξ(x), x ∈ Ω, where the values û(ξ) satisfy û(ξ) = g(ξ) for ξ ∈ ∂Ξ,
and

−
∑

ξ∈Ξζ

û(ξ)

∫

Ω

∇ϕξ∇ϕζ dx =

∫

Ω

fϕζ dx, ζ ∈ Ξint,

with Ξζ consisting of ζ and all vertices of the triangulation connected to ζ by an edge.
The integrals in the left hand side (entries of the stiffness matrix) can be computed
explicitly, whereas those in the right hand side (components of the load vector) require
a quadrature formula. A standard scheme for the linear finite element method is the
midpoint rule on each triangle in the support of ϕζ . Hence

∫

Ω

fϕ̂ζ dx =
∑

θ∈Θζ

∫

Tθ

fϕ̂ζ dx ≈
∑

θ∈Θζ

area(Tθ)

3
f(θ),
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where Θζ is the set of the barycentres of all triangles attached to ζ , and Tθ denotes the
triangle with barycentre θ. Thus, we arrive at (11), where

wζ,ξ := −

∫

Ω

∇ϕξ∇ϕζ dx, σζ,θ :=
area(Tθ)

3
. (12)

2.2 Numerical differentiation stencils

Numerical differentiation formulae (1) and stencils for the finite difference method are
usually obtained by truncating Taylor expansions, which guarantees polynomial exact-
ness (consistency) up to certain order. On the other hand, stencils can be derived with
the help of scattered data fitting methods as follows.

Let s be an approximation to u from scattered data given by a set of centres X =
{x0, . . . , xn} ⊂ R

d and corresponding function values u|X = [u(x0), . . . , u(xn)]T , in the
form

s =

m
∑

i=0

aisi, (13)

where si, i = 0, . . . , m, are some basis functions for which Dsi exist (and can be ef-
fectively evaluated), and the coefficient vector a = [a0, . . . , am]T depends linearly on
u|X,

ai =
n

∑

j=0

biju(xj), i = 0, . . . , m, (14)

or, in matrix form a = B · u|X, where B = [bij ]
m,n
i=0,j=0. Then

Du(x) ≈ Ds(x) =
m

∑

i=0

aiDsi(x) =
n

∑

j=0

(

m
∑

i=0

bijDsi(x)
)

u(xj) =
n

∑

j=0

wju(xj),

and we get a numerical differentiation formula (1) with a stencil w = [w0, . . . , wn]
T given

by

wj =

m
∑

i=0

bijDsi(x), j = 0, . . . , n,

or in matrix form
w = BT · [Dsi(x)]

m
i=0. (15)

In particular, consider the case when m = n and the coefficients aj are obtained by
solving a non-singular interpolation problem

s(xi) =
n

∑

j=0

ajsj(xi) = u(xi), i = 0, . . . , n.

Then clearly B = S−1
X , where SX := [sj(xi)]

n
i,j=0. Therefore, the stencil w is given by

w = S−T
X · [Dsi(x)]

n
i=0,
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and can be computed by solving the linear system

ST
Xw = [Dsi(x)]

n
i=0, (16)

that is,
n

∑

i=0

wisj(xi) = Dsj(x), j = 0, . . . , n.

Clearly, many other approximation methods, for example least squares or quasi-
interpolation are of the type (13)–(14) and therefore lead to numerical differentiation
stencils in the form (15). Since

Du(x) −

n
∑

j=0

wju(xj) = D
(

u(x) −

m
∑

i=0

aisi(x)
)

,

the accuracy of the stencil directly relates to the accuracy of the approximation method.

2.3 RBF-FD methods

A family of well performing methods for scattered data interpolation is based on radial

basis functions (RBF), and therefore it is natural to expect that good stencils can be
generated from RBF interpolation.

Let ϕ : R+ → R be a positive definite function. Given any setX = {x0, . . . , xn} ⊂ R
d

of centres and a function u : R
d → R, the RBF interpolant with a constant term [2, 5, 12]

is sought in the form

s(x) =

n
∑

j=0

ajϕj(x) + c, ϕj(x) = Φ(x− xj), Φ(x) := ϕ(‖x‖), (17)

where ‖x‖ is the Euclidean norm of x, and the coefficients aj are chosen such that

s(xi) = u(xi), i = 0, . . . , n,

n
∑

j=0

aj = 0. (18)

The coefficients aj are uniquely determined as solutions of the linear system

n
∑

j=0

ajΦ(xi − xj) + c = u(xi), i = 0, . . . , n,

n
∑

j=0

aj = 0,

which may be written in matrix form as

[

ΦX 1

1T 0

] [

a
c

]

=

[

u|X
0

]

, ΦX := [Φ(xi − xj)]
n
i,j=0, 1 := [1 · · · 1]T .

The matrix ΦX is symmetric and positive definite for any set X.
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Referring to the general setting of Section 2.2, we see that here m = n + 1, si = ϕi,

i = 0, . . . , n, sn+1 = 1, and B is obtained from the matrix

[

ΦX 1

1T 0

]−1

by removing its

last column. By introducing an auxiliary real variable v, we can write (15) in the form
[

w
v

]

=

[

ΦX 1

1T 0

]−1

[Dsi(x)]
m
i=0,

which leads to the linear system
[

ΦX 1

1T 0

] [

w
v

]

=

[

[Dϕi(x)]
n
i=1

0

]

, (19)

assuming that the differential operator D annihilates constants.
Note that the stencil w satisfies

∑n
j=0wj = 0, which implies that the system matrix

[wζ,ξ] of (6) or (11) will be weakly diagonally dominant if it is an L-matrix. This is why
we insist on using RBF interpolation with a constant term even though both the constant
term c and the side condition

∑n
j=0 aj = 0 can be removed in (17)–(18) because ΦX is

nonsingular. In this case of ordinary RBF interpolation the coefficient v and the last
equation will disappear in (19), leading to a simpler linear system ΦXw = [Dϕi(x0)]

n
i=0

for the computation of the stencil, as in (16). However, in general, stencils obtained this
way do not sum to zero.

In this paper we consider the Gaussian RBF ϕ(r) = e−(cr)2 , which is positive definite
for any value of the shape parameter c > 0. For this function, the matrix ΦX takes the
form

ΦX = [e−c2‖xi−xj‖2

]ni,j=1. (20)

The Laplacian of the Gaussian function Φ(x) = e−c2‖x‖2

needed for the discretisation of
the Poisson equation (2) is given by

∆Φ(x) = 2c2e−c2‖x‖2

(2c2‖x‖2 − d). (21)

We now make use of the stencils w determined by (19) to define two types of RBF
stencils for the discretisation of the Dirichlet problem (2)-(3), see [3] for more details
about these methods. Referring to (11), we describe in each case how local collocation
centres in Θζ and the weights σζ,θ are chosen and give a linear system that defines
the weight vector w assuming that the set of local discretisation centres Ξζ is known.
There are many algorithms in the literature for choosing Ξζ , see [3, Section 5] for an
overview. In the numerical results of this paper we make use of the method described
in [3, Algorithm 1].

Single point RBF stencil

Similar to the finite difference stencils, a numerical differentiation formula for the value
of the Laplacian of u at a single point ζ is used. Hence the discretisation of the Dirichlet
problem is given by (6)–(7) with w = [wζ,ξ]ξ∈Ξζ

computed according to (19) with D = ∆.
Namely, let Ξζ = X = {x0, . . . , xn}, ζ = x0, be a local set of discretisation centres. Then
w is computed by solving the linear system

[

ΦX 1

1T 0

] [

w
v

]

=

[

[∆ϕi(x0)]
n
i=1

0

]

. (22)
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Multipoint RBF stencil

Motivated by the stencils resulting from the finite element discretisation, we also con-
sidered in [3] a method based on numerical differentiation of the operator D defined by
a linear combination of Laplacians

Du :=
ℓ

∑

k=1

σk∆u(· − x0 + yk),

where Θζ = {y1, . . . , yℓ} and positive weights σ = [σζ,θ]θ∈Θζ
= [σ1, . . . , σℓ] are properly

chosen. Then Du(x0) =
∑ℓ

k=1 σk∆u(yk), and (19) leads to the following linear system
for the computation of w,

[

ΦX 1

1T 0

] [

w
v

]

=

[

[
∑ℓ

k=1 σk∆ϕi(yk)]
n
i=1

0

]

. (23)

Following [3], we take into account the fact that Ξζ = X = {x0, . . . , xn} produced by [3,
Algorithm 1] contains ζ = x0 in its convex hull 〈X〉, and choose ℓ = n local collocation
centres in our numerical results in 2D as follows. Split 〈X〉 into n triangles T1, . . . , Tn by
connecting x0 to the other points x1, . . . , xn ∈ Ξζ by straight line segments, and define
Θζ = {y1, . . . , yn} to be the set of barycentres of T1, . . . , Tn. Clearly, this resembles Θζ

arising from the finite element discretisation as described in Section 2.1. In this paper,
motivated by (12) we use σk = area(Tk)/3, k = 1, . . . , n. Therefore, Du(x0) can be
interpreted as discretisation of the integral

∫

〈X〉
∆u(x) dx.

2.4 Stable computation for small c

Since the matrix (20) is extremely ill-conditioned for small values of the shape parameter
c, alternative approaches for solving (19) are needed in this case. Several methods are
available, see [6] and references therein. We follow the RBF-QR method of [6] adapted
to RBF interpolation with a constant term as in [4]. Without describing further details,
available in [6, 4], we mention that for the single point method the stencils w are com-
puted by solving a properly normalised linear system [4, Eq. (25)], whereas in the mul-
tipoint case the right hand side ∆ψ̃i(x0) of this system is replaced by

∑ℓ
k=1 σk∆ψ̃i(yk),

where ψ̃i are appropriate linear combinations of polar-Chebyshev functions, see [4]. Note
that this method also allows the computation in the limiting case c = 0.

3 Numerical study of optimal shape parameter

In [4, Section 4] we studied the performance of the Gaussian RBF-FD method with single
point stencil depending on the choice of the shape parameter c. Now, using the same
test problems, we investigate the multipoint stencil, and obtain similar conclusions. We
will see, however, that the errors obtained with multipoint stencil are often significantly
better.

As in [4], we consider the Dirichlet problem (2)-(3) on four domains listed below,
with the right hand sides given by the functions f1–f8 and boundary conditions defined
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by the restriction of the corresponding exact solutions u1–u8, see Table 1. For each
domain Ω we consider five sets of discretisation centres Ξ = Ξ(1), . . . ,Ξ(5) generated as
follows. First, an initial triangulation T (1) is computed using MATLAB PDE Toolbox
[9] with default mesh generation parameters. This triangulation is uniformly refined
four times, which produced the triangulations T (2), . . . , T (5). The sets of discretisation
centres Ξ(1), . . . ,Ξ(5) consist of all vertices of corresponding triangulations. The number
of interior centres for each Ξ(i) is shown in Table 2.

Domains: (a) the square (−1, 1)2, (b) the unit disk r < 1, (c) the unit disk with
a square hole (−0.4, 0.4)2, see Figure 1 (left), and (d) a polygonal domain shown in
Figure 1 (right).

exact solution right hand side

u1(x, y) = sin(2xy) f1(x, y) = −4 sin(2xy)(x2 + y2)

u2(x, y) = e−x2−y2

f2(x, y) = 4(x2 + y2 − 1)e−x2−y2

u3(x, y) = sin(πx) sin(πy) f3(x, y) = −2π2 sin(πx) sin(πy)

u4(r, φ) = r2(r − 1) sin(2φ) f4(r, φ) = 5r sin(2φ)

u5(x, y) = e−(x−0.1)2−0.5y2

f5(x, y) = e−(x−0.1)2−0.5y2

(y2 + (−2x + 0.2)2 − 3)

u6(x, y) = sin(2π(x − y)) f6(x, y) = −8π2 sin(2π(x − y))

u7(x, y) = sin(x3y) + ex − x/(1 + y2) f7(x, y) = −9 sin(x3y)x4y2 + 6cos(x3y)xy + ex

− sin(x3y)x6 − 8xy2

(1+y2)3
+ 2x

(1+y2)2

u8(x, y) = ex cos y f8(x, y) = 0

Table 1: Test functions u1, . . . , u9 (exact solutions of the test problems) and their Lapla-
cians (right hand sides for the test problems) fi = ∆ui, i = 1, . . . , 8. The functions u4

and f4 are given in polar coordinates.

square disk disk with hole polygon

#Ξint cdmin #Ξint cdmin #Ξint cdmin #Ξint cdmin

Ξ(1) 33 0.043 28 0.042 15 0.052 15 0.033

Ξ(2) 149 0.086 125 0.085 90 0.095 83 0.080

Ξ(3) 633 0.172 529 0.169 420 0.191 381 0.161

Ξ(4) 2609 0.347 2177 0.347 1800 0.386 1625 0.325

Ξ(5) 10593 0.706 8833 0.705 7440 0.758 6705 0.660

Table 2: Number of interior centres and ‘safe’ shape parameter cdmin for each discreti-
sation.

The quality of a discrete solution û of the Dirichlet problem, defined on a set of
discretisation centres Ξ = Ξ(i), is measured by its root mean square (rms) error against
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Figure 1: Initial triangulation T (1) for the disk with a square hole and for the polygonal
domain.

the values of the exact solution on Ξint,

rmse :=
( 1

#Ξint

∑

ξ∈Ξint

(û(ξ) − u(ξ))2
)1/2

. (24)

Apart from the RBF-FD solutions, this formula applies to the standard linear finite
element method with midpoint quadrature rule on the corresponding triangulation T (i).
We will use rmse of the finite element method as reference. For the RBF-FD single point
stencils, we consider in addition the normalised rms error of the numerical differentiation
formula (10), given by

rmsed :=
( 1

#Ξint

∑

ζ∈Ξint

r2
ζ

)1/2

, rζ =
(

∑

θ∈Θζ

σζ,θ∆u(θ) −
∑

ξ∈Ξζ

wζ,ξu(ξ)
)

/
∑

θ∈Θζ

σζ,θ, (25)

where in the case of the single point stencil the expression for rζ obviously simplifies to
rζ = ∆u(ζ) −

∑

ξ∈Ξζ
wζ,ξu(ξ).

As in [4], we select the stencil supports Ξζ by the meshless algorithm described in
[3, Algorithm 1]. On the quasi-uniform sets of centres used in this paper this algorithm
delivers Ξζ in most cases not different from the stencil supports used by the linear finite
element method. Therefore, the density/bandwidth pattern of the system matrix [wζ,ξ]
is very close to that of the finite element stiffness matrix.

For each Ξ(i) we computed a ‘safe’ value cdmin of the shape parameter that guar-
antees that the condition number of the matrix of the system (19) does not exceed
1012 for any local set Ξζ if c ≥ cdmin. We directly solve the system (22) or (23)
if c ≥ cdmin, and use RBF-QR method if c < cdmin. RBF-QR computations are
done by adapting the MATLAB code provided in [6] and available for download from
http://user.it.uu.se/~bette/research.html

Numerical results are presented in Figures 2–5 and Tables 3 and 4. In particular,
Figures 2 and 3 and both tables are devoted to the multipoint stencil results for the test
function u3 on all domains and sets of centres.

The conclusions from these numerical results are similar to those presented in [4,
Section 4] for the single point stencil. The key observations:

• For many test problems knowing the optimal shape parameter significantly im-
proves the error of the RBF solution.
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Figure 2: Left: The rms error of the multipoint stencil solutions for the test function u3

on five sets of centres as a function of the shape parameter c (solid lines) compared to the
rms error of the FEM solutions (dashed lines). Right: The numerical differentiation error
of the multipoint stencil. From top to bottom: square, disk, disk with hole and polygonal
domain. In each subfigure the five solid curves present the error of the multipoint stencil
method on the five sets of centres, whereas the dashed constant curves show the error of
the finite element method on the five triangulations for comparison. The stars indicate
the value of c = cdmin.
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(a) Square.

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

(number of interior centres)−1

rm
s 

er
ro

r

 

 

FEM
Opt
QR0
Safe

(b) Disk.
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(c) Disk with hole.
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(d) Polygonal domain.

Figure 3: The rms error of the multipoint stencil solutions for the test function u3 on
five sets of centres as function of the number of degrees of freedom, for three values of
the shape parameter: Safe refers to c = cdmin, as shown in Table 2, QR0 refers to ‘flat
limit’ case c = 0, and Opt to the optimal values of c shown in Table 3.

square disk disk with hole polygon

Ξ(1) 1.31 [0.36,1.73] 1.24 [0.4,2.11] 1.35 [0.79,1.73] 1.43 [0.61,1.91]

Ξ(2) 1.39 [1.00,1.69] 1.26 [0.085,1.74] 1.43 [0.83,1.82] 1.34 [0.08,1.81]

Ξ(3) 1.26 [0.95,1.51] 1.29 [0.76,1.65 ] 1.37 [0.72,1.79 ] 1.29 [0,1.87]

Ξ(4) 1.21 [0.93,1.44] 1.30 [0.88,1.61] 1.35 [0.73,1.76] 1.31 [0,2.00]

Ξ(5) 1.21 [0.90,1.45] 1.31 [0.93,1.60] 1.33 [0.75,1.73] 1.32 [0,2.08]

Table 3: Optimal shape parameters for the rms error of the multipoint stencil solution û
for the test function u3. For each domain, the number in the first column is the optimal
shape parameter, whereas the second column indicates the range of values of the shape
parameter, for which the rms error is at most twice the optimal error.
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Figure 4: The rms error of the multipoint stencil solutions (left) and the rms differen-
tiation error (right) as in Figure 2. From top to bottom: u5 on the polygonal domain,
u7, u8 and u1 on the disk.
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square disk disk with hole polygon

Ξ(1) 1.57 1.63 1.48 1.47

Ξ(2) 1.31 1.36 1.34 1.30

Ξ(3) 1.29 1.30 1.30 1.31

Ξ(4) 1.28 1.28 1.29 1.27

Ξ(5) 1.28 1.29 1.29 1.27

Table 4: Optimal shape parameters for the rms differentiation error of the multipoint
stencil for the test function u3.
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(a) u2 on the polygonal domain.
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(b) u4 on the disk.
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(c) u5 on the square.
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(d) u6 on the disk with hole.

Figure 5: The rms error of the multipoint stencil solutions for the test functions
u2, u4, u5, u6. The layout of the figures is the same as in Figure 2 (left).
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• Comparing to the results in [4, Section 4], we see that multipoint stencils perform
better than single point stencils, and in almost every test the error of the multipoint
stencil solution is better than the error of the finite element solution.

• The optimal value of the shape parameter c depends on the test function. However,
it does not vary much when the number of centres or even the domain is changed.
Comparing Tables 3 and 4 with Tables 4 and 5 of [4], we also conclude that the
optimal shape parameters for single point and multipoint stencils do not differ
much.

• The flat limit case c = 0 gives a good solution comparable to the finite element so-
lution, albeit often significantly worse than the solution obtained with the optimal
shape parameter. Comparing to [4, Section 4], we can say that the results with
c = 0 are better for multipoint stencil than for the single point stencil approach.

• As in the single point case, the ‘safe’ shape parameter seems a dangerous choice
for finer sets of centres.

• The value of c optimal for the error of the PDE correlates well with the optimal
value of c for the numerical differentiation, which is particularly emphasised by
comparing Tables 3 and 4.

4 Estimation of optimal shape parameter

In this section we investigate the performance of Algorithm 1 of [4] for the multipoint
stencil. Recall that this algorithm is based on the observation that the optimal shape
parameter does not change much when the set of centres is refined, and therefore a good
estimation of the optimal shape parameter can be obtained by minimising the error with
respect to a solution on a refined set of centres.

More precisely, given two values c, cref of the shape parameter corresponding to two
sets of centres Ξ,Ξref , such that Ξ ⊂ Ξref , we assume that a cost function cost(c, cref) is
defined that measures how well the RBF method with parameter c on centres Ξ performs
comparing to the RBF solution with parameter cref on centres Ξref .

Algorithm 1 ([4]). Input: two sets of centres Ξ,Ξref such that Ξ ⊂ Ξref and initial esti-
mate of the optimal shape parameter cref . Output: estimated optimal shape parameter
copt. Parameters: tolerances δ > ε > 0, maximum number of iterations m, upper bound
C for the shape parameter. In the numerical tests below the following parameter values
have been used: ε = 0.01, δ = 0.1, m = 4, and C = 5.

I. Compute Gaussian RBF solution ûref on Ξref with shape parameter cref and find
c ∈ [cmin, cmax] such that cost(c, cref) is minimised, where [cmin, cmax] = [0, C] if
cref = 0 and [cmin, cmax] = [cref − δ, cref + δ] otherwise.

II. For i = 1, . . . , m:
If |c− cref | < ε: STOP and return copt = c.
ElseIf c = cmin or c = cmax: STOP and return copt = NaN.
Else: Set cref = c and repeat Step I.

Return: copt = NaN
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Note that Algorithm 1 fails if it returns NaN. If this happens, it should be rerun
with different input parameters. We discuss below how we do this in our numerical
experiments.

Depending on the choice of the cost function, we distinguish two versions of Algo-
rithm 1, the first referred to as Algorithm 1a, and the second as Algorithm 1b.

For Algorithm 1a, let û and ûref be the the RBF solutions of the Dirichlet problem
(2)–(3) with the shape parameter c on Ξ and cref on Ξref , respectively. Since Ξ ⊂ Ξref ,
ûref is well defined for ξ ∈ Ξ. The cost function in this case is given by the formula

cost(c, cref) :=
( 1

#Ξint

∑

ξ∈Ξint

(û(ξ) − ûref(ξ))
2
)1/2

. (26)

The cost function for Algorithm 1b measures the the accuracy of the RBF numer-
ical differentiation formulae (10) on the set Ξ, obtained with the shape parameter value
c,

∑

θ∈Θζ

σζ,θ∆u(θ) ≈
∑

ξ∈Ξζ

wζ,ξu(ξ), ζ ∈ Ξint,

against the ones on the refined set of centres Ξref , obtained with the shape parameter
value cref ,

∑

θ∈Θref

ζ

σref
ζ,θ∆u(θ) ≈

∑

ξ∈Ξref

ζ

wref
ζ,ξu(ξ), ζ ∈ Ξref

int.

The error between two approximate average Laplacians of ûref in the neighborhood of
ζ ∈ Ξint is therefore given by

eζ =
(

∑

θ∈Θζ

σζ,θ

)−1 ∑

ξ∈Ξζ

wζ,ξûref(ξ) −
(

∑

θ∈Θref

ζ

σref
ζ,θ

)−1 ∑

ξ∈Ξref

ζ

wref
ζ,ξûref(ξ),

leading to the cost function in the form

cost(c, cref) :=
( 1

#Ξint

∑

ζ∈Ξint

e2ζ

)1/2

. (27)

Clearly, definitions (26) and (27) apply to both single point and multipoint stencil
versions of RBF-FD method. The cost function (27) is cheaper to evaluate because it
does not require solving the linear system (11) to obtain û.

In our numerical tests with the sets Ξ(1), . . . ,Ξ(5), we apply Algorithm 1 as follows,
see [4] for more details. We first run it with Ξ = Ξ(1), Ξref = Ξ(3), cref = 0, to obtain
a nearly optimal shape parameter c1 for Ξ(1). We then run it with cref = c1, Ξ = Ξ(2),
Ξref = Ξ(3), to obtain a nearly optimal shape parameter c2 for Ξ(2). On the rare occasion
that Algorithm 1 fails and returns NaN, we set cref = 0 and rerun Algorithm 1 with Ξref

replaced by its refinement if cref was zero already. The value c2 is also used on the
sets Ξ(3),Ξ(4),Ξ(5). Therefore, multiple values of c are only tested on Ξ(1),Ξ(2),Ξ(3), and
in a few exceptional cases on Ξ(4), which is executed at a fraction of the cost of the
computation with a single c on Ξ(5).

Optimisation with respect to c in Step I is done using MATLAB function fminbnd.
We set MaxFunEvals = 9 and TolX= 10−2 to reduce computation cost. Parameter m is
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an upper bound on the number of computations of the RBF solution on Ξref . Setting
m to a small value may help to reduce the cost.

Figures 6–8 and Tables 5–7 below illustrate the performance of Algorithm 1 for
the test problems in Figures 2, 4 and 5. In these experiment Algorithm 1a effectively
finds near-optimal shape parameter, whereas the less expensive Algorithm 1b sometimes
returns sub-optimal, albeit acceptable results. The tables also confirm that the number
of iterations needed in Step II is small, typically just 2 or 3. Moreover, Figures 6–
8 provide comparison with the results of numerical tests with Algorithm 1 for single
point stencil method, see also Figures 8–10 in [4]. We see that while for u3 the results
for single point and multipoint stencils are comparable, in most other tests multipoint
stencil significantly outperforms single point stencil, with the exception of u8, where
single point stencils seem to be better. (This might be related to the fact that u8 is a
harmonic function.)
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(a) u3 on the square
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(b) u3 on the disk

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

(number of interior centres)−1

rm
s 

er
ro

r

 

 

FEM
mpAlg1a
mpAlg1b
spAlg1a
spAlg1b

(c) u3 on the disk with hole
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(d) u3 on the polygonal domain

Figure 6: The rms error of the single point (sp, dashed curves) and multipoint (mp,
solid curves) stencil solutions for the test function u3 on five sets of centres as function
of the number of degrees of freedom, with the shape parameter values produced by
Algorithm 1: Alg1a and Alg1b refer to Algorithm 1a and 1b, respectively. The error of
the finite element method is also shown (FEM) for comparison.
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(a) u5 on the polygonal domain
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(b) u7 on the disk
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(c) u8 on the disk
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(d) u1 on the disk

Figure 7: The rms error of the single point and multipoint stencil solutions for the test
functions and domains as in Figure 4 on five sets of centres, with the shape parameter
values produced by Algorithm 1. The symbols in the legend are the same as in Figure 6.
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(a) u2 on the polygonal domain.
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(b) u4 on the disk.
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(c) u5 on the square.
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(d) u6 on the disk with hole.

Figure 8: The rms error of the single point and multipoint stencil solutions for the test
functions and domains as in Figure 5 on five sets of centres, with the shape parameter
values produced by Algorithm 1. The symbols in the legend are the same as in Figure 6.
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square disk disk with hole polygon

copt nIter copt nIter copt nIter copt nIter

Algorithm 1a 1.41 3 1.25 2 1.43 2 1.36 2

Algorithm 1b 1.31 3 1.35 3 1.35 2 1.30 2

Table 5: The near optimal shape parameter copt for the multipoint stencil method and
the number of iterations nIter in Step II of Algorithm 1 when Ξ = Ξ(2) and Ξref = Ξ(3)

for the test function u3.

u5 polygonal u7 disk u8 disk u1 disk

copt nIter copt nIter copt nIter copt nIter

Algorithm 1a 0.72 3 0.47 4 0.28 4 0.71 4

Algorithm 1b 0.79 2 0 1 0 1 0 1

Table 6: The near optimal shape parameter copt and the number of iterations nIter for
the multipoint stencil method as in Table 5 for the test functions and domains as in
Figures 4 and 7.
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