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Abstract. A simple method for constructing almost interpolation sets in the
case of existence of locally linearly independent systems of basis functions is
presented. Various examples of such systems, including translates of box splines
and finite-element splines, are considered.

1. Introduction

In [16] we have shown how the well-known Schoenberg-Whitney condition for
interpolation by univariate polynomial splines can be extended to multivariate
splines or even to the general setting of real functions defined on a topological
space. For this case it characterizes almost interpolation sets (AI-sets); i.e., those
configurations 7" such that in every neighborhood of T there exists a configuration
T (I-set) which admits Lagrange interpolation.

In practice it is clearly quite important to have algorithms of constructing
I-sets. For instance, for a system {By,..., B,} of univariate polynomial B-splines
it is well-known that any set T = {t1,...,t,} such that ¢; € {t € R : B;(t) #
0},i=1,...,nis an I-set w.r.t. span {Bi,..., Bp} (support property).

Since general methods of transforming AI-sets into an I-sets are available (see
[16, Section 5]), and, on the other hand, no simple characterization of I-sets seems
possible in the multivariate case, it would be desirable to find simple construction
methods for Al-sets. In the above example of univariate polynomial B-splines, it
can be easily seen that AI-sets are characterized by the condition

t; €suppB; :={te R:B;(t) #0}, i=1,...,n.
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A certain extension of this weak support property to multivariate splines has been
found in [25] (see also [16, Theorem 3.7 and Theorem 4.12]). However, it sub-
stantially differs from its univariate source. The disadvantage is that each basis
of a multivariate spline space U has to be examined in order to check whether a
configuration 7" is an Al-set.

Fortunately, this drawback can be overcome if U admits a locally linearly in-
dependent basis (LI-basis). Local linear independence was considered by de Boor
and Hollig [6], Dahmen and Micchelli [13] and Jia [19] as a property of the in-
teger translates of a box spline, and further investigated in [2,8,9,14,15,17,20,26].
(Particularly, Carnicer and Pefia [9] have shown that I-sets with respect to a
finite-dimensional space spanned by a locally linearly independent weak Descartes
system of univariate continuous functions can be characterized by the support
property.) The importance of this notion for the study of AI-sets follows from
the fact that for a space U spanned by an LI-basis {u1,...,u,}, a set T =
{t1,...,ts}, s <mis an Al-set w.r.t. U if and only if there exists some permuta-
tion o of {1,...,n} such that t; € suppu,(;), ¢ = 1,...,s (Theorem 2.3).

For constructing AI-sets we are therefore interested in spaces which admit L1I-
bases. In Section 3 we present various examples of such spaces, including univariate
generalized splines, translates of box splines, tensor product splines, continuous
multivariate splines on simplex partitions and finite-element bivariate splines.

In this paper we shall follow the notations of [16].

2. Locally Linearly Independent Systems

In this section we describe some properties of LI-bases and their relationship to
the problem of constructing almost interpolation sets. Although we are mostly in-
terested in finite systems of functions and finite-dimensional linear spaces spanned
by them, the theory of locally linear independence can be developed for certain
infinite systems.

Let K be a topological space. We say that a system of nonzero functions
{ui}ier C F(K), is locally finite if for any t € K there exists a neighborhood B(t)
such that the set

{i € I:B(t)N supp u; # 0}

is finite. Particularly, we can consider the infinite series
> awi(z), zeK,
i€l
taking into account the fact that for each fixed x € K only a finite number of

terms is nonzero.
It is also quite clear that the local dimension

I-dimg U = inf {dimU|p : K' C B, B open}
is finite when U C F(K) denotes a linear space spanned by a locally finite system

of functions and K’ is a finite set. Particularly, ¢(t) := l-dim; U := l-dimg;, U is
well-defined for such spaces.
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Definition 2.1. A locally finite system {u;},cr C F(K) is said to be locally
linearly independent (LI-system) if for any t € K and any neighborhood B(t) of
t there exists an open set B' such that t € B’ C B(t) and the subsystem

{u; : B'Nsuppu; # 0}

is linearly independent. The linear span of an LI-system is called LI-space.
The next theorem gives some equivalent definitions of LI-systems.
Theorem 2.2. [17] Let {u;}icr C F(K) be a locally finite system of functions
and let U = span{u; : i € I'}. The following conditions are equivalent.
1) {u;}ier is a locally linearly independent system.
2) -dim; U = card{i € I : t € suppu;}, t € K.
3) I-dimgr U = card I+, K' C K finite, where

I :={i€I:K nsuppu; # 0}

4) dimU|p = card Ig, B open, if Ip is finite.
5) Given any open B C K,

Zaiui(a:) =0,x€B, implies a;=0 forall i€Ilp.
i€l

6) supp (> a;u;) = | suppu,.
i€l i€l
a;#0
We note that the equivalence of 5) and 6) has been shown by Carnicer and Peiia
[8, Proposition 3.2] for the case when {u;};cs is a finite system of functions.

It turns out that the statement of [16, Theorem 4.12] can be substantially
simplified in the case that U is a finite-dimensional LI-space. Thus, we obtain a
characterization of almost interpolation sets w.r.t. such spaces through a support
property similar to [16, Support property (2.2)].

Theorem 2.3. [17] Let {uy,...,un} C F(K) be a locally linearly independent
system and U = span {uy,...,u,}. A finite set T = {t1,...,t;} C K,s <n, is an
Al-set w.r.t. U if and only if there exists some permutation o of {1,...,n} such
that

ti € SUPP Ug(s), 1 = 1,..., 8.

When a particular system of functions is to be checked whether it is an LI-system
or not, it is often helpful to make use of the following theorem.
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Theorem 2.4. [17] Let {u; : i € I} C F(K) be a locally finite system of functions,
U =span{u; : i € I}. Assume that

int suppu; = suppu;, i € I. (2.1)
If {u;,, 1 € I} is an LI-system, where Gy denotes the set of all points of
continuity of p(t) = 1-dim; U, then {u; : i € I} is also an LI-system.

Note that (2.1) holds for any system of continuous functions u;, since in that case
{t € K : u;(t) # 0} is open and everywhere dense in supp u,.
Some further properties of LI-spaces can be found in [17].

3. Examples of LI-systems

In this section we shall present various examples of LI-systems of uni- and multi-
variate functions. In every particular case when the construction of the LI-system
is given, it is quite easy to characterize almost interpolation sets with the help of
Theorem 2.3.

3.1. Univariate Polynomial B-Splines and Generalized Splines

It is well known that for the m-dimensional space S,,(A) of polynomial spline

functions of degree m with r fixed knots there exists a basis {Bi,...,Bn} of
functions with minimal support, the so-called B-splines (see e.g. [22]). In view of
the properties of these functions, it is obvious that & := {Bi,...,B,} forms an

LI-system for S,,(A).

This system can even be extended by an infinite knot sequence {z;}2__ to
a system U := {B;}2°__ of B-splines of degree m, which is also locally linearly
independent. Moreover, U forms a totally positive system; i.e.,if j1 < ... < jm are
any integers, then det(Bj, (tx)) > 0 for all points ¢ < ... < t, in R, and strict
positivity holds if and only if ¢; € int supp Bj,,¢ = 1,...,m. That case clearly
implies that {¢1,...,tm} is an I-set w.r.t. span {Bj,,...,B;,, }.

Sommer and Strauss introduced in [24] a class of generalized spline spaces
which retains most of the features of the polynomial splines and includes impor-
tant subclasses of spline spaces such as polynomial splines, generalized Chebyshe-
vian splines and subspaces of splines in tension. The main result of [24] consists in
constructing a basis for the generalized spline space which forms a weak Descartes
system, admits a recursion relation and, as it can be easily seen from [24, Theo-
rem 2.1], is locally linearly independent.

Carnicer and Pefia [9] showed that a finite system of continuous functions on
a closed interval of the real line is a locally linearly independent weak Descartes
system if and only if its collocation matrices are almost strictly totally positive.
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3.2. Translates of Box Splines

Let X be an arbitrary set of vectors (not necessarily distinct) containing a basis
for RF, _
X = {2}, c RF\{0}, span X =RF.

(X will also be used to denote a k x n matrix.) Moreover, let
X(t):=> tia!, if t={tr,...,ta} € R,
=1

B(X):={VCX: card V =dim span V = k}.
Definition 3.1. The box spline B(:|X) is a function defined by the rule

[ 1@Bax)d= [ e (¢ € cam),
Rk [0,1)"
where [0,1)" denotes the halfopen unit n-cube.

The box splines have some important properties, including local support and piece-
wise polynomial structure (see e.g. [3,11,7]).
Theorem 3.2. The following statements are true.
1) supp B(1X) = X([0,1]").
2) [ B(z|X)dz = 1.
]Rk

3) B(|X) € C{O~HR") \ C*X)(RF) where d(X) :=min {cardY : Y C X,
spanX \ 'Y #RF} —1.

4) Set
k=1 _
Bx := {Z ¢zt + Z bzt :0<¢; <1, b; = =1,
J=1 Jjer
1< <...<tgp_q STL}
where I' = {i’;} denotes the complementary set of {i; f;ll w.r.t. {1,...,n}. Then

the restriction of B(-|X) to each component of the complement of Bx is a poly-
nomial of total degree n — k (Bx is called the grid partition of B(:|X)).

Now we consider the space S(X) spanned by the integer translates of the box
spline B(-|X),

S(X):= span {B(-—a|X):ac Z*}.
To determine AI-sets w.r.t. finite-dimensional subspaces of S(X) we are interested
in the question of whether the system of translates

{B(-—a|X):acZ*}

represents an LI-system. In fact, the following characterization due to de Boor
and Hollig [5,6], Dahmen and Micchelli [12,13] and Jia [18,19] is true.
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Theorem 3.3. Let X = {2%}7, C 7ZZ" \ {0} with span X = R*. The following
conditions are equivalent.

1) X is unimodular; i.e.,
|det V| =1 for all V C B(X).
2) {B(-—a|X):a € Z*} is an LI-system.
3) {B(-—a|X) : a € ZZ*} is a globally linearly independent system of functions.

We note that several characterizations of unimodular matrices are available. (See,
for example, [21, Chapters 19-21] and, in the case k = 2, [7, (I1.29), p. 41].)

Let us now consider the case k¥ = 2 more detailed. Suppose that the matrix
X C 7Z* contains the unit vectors e! and e2. Following the notation of [11] we set

Btuvw(') = B('|Xtuvw)
with

_ 1 1 1 2 _ .1
Kiwww ={€,...,e7,e%,...,e%e +¢e,...;e +e*,e®—e,... e —el},

v
w

p
< 9
(

t u

t,u, v, w nonnegative integers, t,u > 1. It follows easily from Theorem 3.2 that the
grid partition w.r.t. Bryyw iS

1) a rectangular partition if v = w = 0 and ¢,u € IN;

2) a type-1 triangulation if w = 0 and ¢,u,v € IN or v =0 and ¢,u,w € IN;

3) a type-2 triangulation if ¢, u, v, w € IN.

Moreover, the following result is an immediate consequence of Theorem 3.3

and [7, (IL.29)].
Proposition 3.4. Assume that t,u > 1. Then the following statements hold.

1) Xtyvw is unimodular if and only if v =0 or w = 0.

2) The system of translates

{Btuww(- — 1, — ) : 1,00 € 7L}

is locally linearly independent if and only if v =0 or w = 0.

3) Each function By, (- — a1, —as) is a bivariate spline function of total degree
t+u+v+w—2 and smoothness t + u + v + w — max{t, u,v,w} — 2.

Example 3.5. We consider two special cases.

1) Let t = 2,u = 1,v = 2,w = 0. Then the resulting system of translates of the
box spline Bgjg¢ is an LI-system. The support of Bayag is given by the first
figure in Fig. 3.1.

2) Let t = u = v = w = 1. Then the resulting system of translates fails to be

an LI-system. The support of the corresponding box spline Bjj11 is given by
the second figure in Fig. 3.1.
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Fig. 3.1.

3.3. Tensor-Product Spaces

Let K; and Ks, respectively be topological spaces. Assume that By = {B;}icr,
and By = {B;}ic1, denote LI-systems in F(K;) and F(K,), respectively where I
and I, are index sets. Set

K .= Kl X KQ,

the topological product of K; and Kj, and
B :={BiBj}icr je1,-

Theorem 3.6. The system B is an LI-system in F(K).

Proof: Assume that B fails to be an LI-system. Then there exist ¢ € K and an
open neighborhood M of ¢ such that for some (z,7) € I; x I,

B;iB; =733 aiBiBjon M,

ieh jela

where I; and I, are finite index sets such that (I} x Ir)U {5,5} ={(i,j) e L xIz:
M N supp B;B; # 0}.

Without loss of generality assume that M = M; x My for some open M; C
K;,i=1,2. Let t = (f;,t5) € M such that #; € K;, i = 1,2 and B‘j(fz) # 0. Then

Bi(t) = > | D ai;B;(t2)/B;(E2) | Bi(ha).

1611 JEIg

This is even true for any #; € M;, contradicting the properties of the LI-system
B;. 1
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Remark 3.7. As an important application of the preceding theorem let us con-
sider the case when K; = [a,b] C R, K2 = [¢,d] C R, and A and A are some knot
partitions of K; and Ko, respectively. Assume that S,,(A) and S;(A) denote the
linear spaces of polynomial splines on K and K», respectively as has been defined
in [16, Section 2]. By Section 3.1 the B-spline bases of S,,(A) and S;(A), denoted
by
By ={By,...,B,}and B, = {By,..., B},

respectively are LI-systems in F'(K;) and F(K>), respectively. Hence by Theorem
3.6 the tensor-product space of bivariate polynomial spline functions of degree m
in the first variable and degree [ in the second one,

U := span {BiBj}i":lj‘:l

has a locally linearly independent basis, {Bif?j};‘:l]ﬁ:l.

3.4. Multivariate Splines on Simplex Partitions
Let 20,...,2% € R*, k > 1. The simplex

k k

[xo,...,xk] = {Z)\lxzz )\1 = ]., )\,‘ 20}

i=0 i=0
with vertices z°, ..., z" is called a k-simplex, if its volume in R* is nonzero. Let
A = {S:}icr,

a family of finitely many k-simplices in R* which satisfy the following property:
If 5;,5; € A, then §; N S; is empty or a common face. Set

K =] S.
i€l
For given integers r and d (0 < 7 < d) we consider

S3(A) :={s € C"(K) : s restricted to each k-simplex
is a polynomial of total degree d},

the space of polynomial splines of degree d and smoothness r on A.

Suppose now that S := [2°,...,2%] is a k-simplex in A. Then any z =
(z1,...,7;) € RF can be identified by the barycentric coordinates (Xo, ..., )
w.r.t. S, where

i—1

_ovolg[2®, . 2ttt 2]

=0,...,k.
volg[z9, ..., z¥] P T e
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Hence, \; is a linear polynomial in z. For any 8 = (B, ...,Bk) € Z’j_"’l, as usual
we set

A= \Bo NBEBt= Bl B, |8l = Bo+ .-+ Br-

Then i

PN = ﬂ—'!kﬁ, 18l =d
is a polynomial of degree d, and the set of all such functions {Lp%()\) 1|8l =d}is a
basis of 7r§, the space of all polynomials of total degree at most d with k variables.

Let s € S7 and z € S. Then s|z € 7% and

which is called the Bézier-Bernstein form of s w.r.t. S (see [4]).
In addition, the set {(Ps(S),a%(S)) : || = d} is called the Bézier-net of s

w.r.t. § where

z*,

SRS

d
Pa(S)=>"

1=0

the domain point and each ag(g) is called Bézier-ordinate, associated with Pg(S).

The Case r =0
Let T; = [2°,..., '] be an I-simplex in RF where 0 < I < k and let

Sy =2 ..., a2t L af] e A,
Sy =20 ..., 2Lyt yfleA
be two adjacent k-simplices with S; N Sy = 7). Suppose that s € SJ(A). Then

sls, (2) = ) af(S)pp(N), « € S,
|31=d

3|52(1') = Z afa(52)90fa(77)a T € S,
|B|=d

where A = (Ag,...,Ag) and n = (o, ...,nx) are the barycentric coordinates w.r.t.
S1 and Sy, respectively. Clearly, € T; if and only if

k k
xr = E )\ixl = E ni.’L'l
=0 1=0
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which implies that A\; = n;,i = 0,...,k. Moreover, it follows that if s|s,us, €
C(S1 U Sy),
a%(S1) = aB(S2)

for all 8 = (Bo,...,0,0,...,0) with Bo + ...+ 3 =d.
Let B4(A) denote the set of all domain points of all k-simplices S;,i € I.

Given a point P = Pz(S) € By(A), let Ap be the linear functional defined on
S9(A) with the property that

Aps = ag(g),

the Bézier-ordinate of s w.r.t. S (associated with P).
The following dimension formula and explicit construction of a basis for S(A)
are due to Alfeld, Schumaker and Sirvent [1].

Theorem 3.8. The following statements hold.
1) dim SY(A) = card B4(A).
2) There exists a basis of S}(A) given by

B:={Bp € SJ(A): \gBp =ébgp forall P,Q € By(A)}.
We are able to show that B is locally linearly independent.

Theorem 3.9. The basis B of S%(A) defined above is an LI-system.

Proof: Assume that B fails to be locally linearly independent. Then we can find
a k-simplex S such that for some points P,, P, € Bq(A),

Bp, = d,Bp,
P

on S where we clearly assume that S C supp Bpu,g C supp Bp,,d, # 0 and
P, # P,, all P,. It is obvious that P, € S, because otherwise for the Bézier-
ordinates ag,(g’; Bp,) of Bp,,

0= AoBp, = a%(5;Bp,),

for all Q = Q4(S) € B4(A) N S. This would imply that
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where ag(g;Bpp) denotes the Bézier-ordinate of Bp,, associated with P,. Com-

paring now the coefficients of Bp, and Zp d,Bp, on S, we obtain
1=a%(5;Bp,) =) dpa}(5;Bp,) =0,
P

a contradiction. H

Example 3.10. Let &k = 2 and assume that K is a simply connected polygonal
domain in R?. Moreover, let A be a regular triangulation of K (see [16, Example
3.2]). Then by the above arguments the space S9(A) of continuous spline functions
of degree d admits an LI-basis B = {Bp}pep,a) Where Bp is defined as above
using the Bézier-Bernstein form.

3.5 Finite-Element Bivariate Splines

Let A = {A; :i =1,...,N} be a triangulation of a domain X C IR?. Suppose
that the vertices and the edges of A are denoted by v1,...,vy and e1,...,€q,
respectively. Following the notation of [23] we define the space of super splines of
degree d and smoothness r, p, with r < p < d, by

STP(A) = {s € C"(K): 8|, € 7a, i=1,...,N,
seCP(v;), j=1,...,V},

where 7, is the space of bivariate polynomials of total degree d, and C*(v;) denotes
the set of functions which are p times continuously differentiable at the point v;.

Suppose that 0 < 2r < p and d > 2p + 1. In this case it has been shown by
Schumaker [23, Section 4] that a basis for S;”(A) can be constructed by using the
classical finite-element method. We describe this basis as follows. For every vertex

v;,1=1,...,V consider Hermite interpolation conditions,
O ) = o < < 4
in)—a%y, 0_,U/+l/_p (3)
On each edge ¢;, i = 1,..., E choose points fi’"7...,§;’fl_2p+y €e,v=0,...,7
and consider the following interpolation conditions,
9”s i,V 7
S () =ay v =0, n =1 d =1 =24, (3.5)
k3
where % denotes the v-th order normal derivative w.r.t. the edge €;. Finally, take
Narp = (d_32T_1) — 3(”_2%) points ¢}, .. .,C}Vd‘r‘p inside each triangle A; in such

a way that Lagrange interpolation conditions

s(¢))=aj, 1=1,...,Napr, (3.6)
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together with the conditions at the vertices and on the edges of the triangle A;
uniquely determine a polynomial of total degree d on that triangle. See [23, The-
orem 4.1 and Remark 4] for the details concerning existence and construction of
the points ¢ (so-called ”type-2 data”).

In view of a theorem by Zenisek [27], the piecewise polynomial function defined
an each triangle A; by conditions (3.4)—(3.6) necessarily belongs to S;*(A). Since
the total number of conditions equals n := dim S}”(A), we conclude that (3.4)-
(3.6) is a well-posed Hermite interpolation problem for S7*(A). Therefore, the
corresponding fundamental functions s1,...,s, form a basis for S7”(A). (Recall
that the fundamental functions ui,...,u, of an interpolation problem F;(u) =
ai,1=1,...,n,u € U, dimU = n, are determined by the conditions F;(u;) = 8;;
where F;, i = 1,...,n are certain functionals and 8;; = 1, 8;; = 01if i # j.)

Theorem 3.11. The fundamental functions s, ..., s, of the interpolation prob-
lem (3.4)—(3.6) form a locally linearly independent basis for the space of super
splines S;P(A), 0<2r <p,d>2p+1.

Proof: Consider first the supports of s;, = 1,...,n. If s; corresponds to a point
vi, &7 or ¢}, then supp s; is evidently the union of all triangles with common
vertex at v;, the union of two triangles with common edge ¢;, or the triangle A;,
respectively. By Theorem 2.4 it suffice to check the locally linear independence of
{s;:7=1...,n} on the continuity set Gy of local dimension; i.e., on the interiors
of the triangles A;. If now # € int A, , then z € supp s; exactly for those s; which
correspond to the points v;,&", ¢} lying on A;,. According to the construction of
the conditions (3.4)—(3.6), the number of such s;’s equals the dimension of 74 and
their restrictions to the triangle A;, are fundamental polynomials of a well-posed
polynomial interpolation problem. Therefore, they are linearly independent in any
neighborhood of x. This completes the proof. M
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