Locally Stable Spline Bases
on Nested Triangulations

Oleg Davydov

Abstract. Given a nested sequence of triangulations Ag, A1, ... of
a polygonal domain 2, we construct for any r > 1, d > 4r 4 1, locally

stable bases for some spaces S;(Ag) C SG(A1) C - C SG(An) C -+
of bivariate polynomial splines of smoothness r and degree d. In par-
ticular, the bases are stable and locally linearly independent simulta-
neously.

§1. Introduction

Let
S;(A)={s€C"(Q): s|pr € Py for all triangles T € A},

be the space of polynomial splines of degree d and smoothness r on a
triangulation A of a polygonal domain €2, where Py is the space of bivariate
polynomials of total degree d.

Suppose the sequence of triangulations Ag, Ay, ..., Ay, ..., of Q ob-
tained by consecutive refinements of an initial coarse triangulation A is
shape regular, i.e., the smallest angle of all triangles in each A, is at least
0, for some 6 > 0 independent of n. Standard conforming smooth finite
elements [4] with respect to A, span the superspline subspaces

SI(A) ={s€85(A): s€ C¥(v) for all vertices v of A},

of 85(A) , r > 4r + 1, [3,21], where s € C?"(v) means that s is 2r times
differentiable at v. Since these spaces are not nested, i.e.,

Sy (D) ¢ SPPT (D),
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there are well known complications in using them for multiscale numerical
methods, see e.g. [19]. As an alternative, it was suggested in [5,17] to use
locally supported bases for the full spline spaces Sj(A,). However, the
standard constructions [1,14,15,18] of locally supported bases for Sj(A)
in general lack the highly desirable property of stability, where a sequence

of spline bases (S[n])iejn C 8§(Ayp), n=0,1,..., is called (L,-)stable if

(2
for all choices of the coefficient vectors ¢ = (¢;)qcr, ,

Killell, < 1Y asillz, @ < Kallel, (1)
iel,

with constants K, Ko depending only on 7, d and . On the other hand,
stable locally supported spline bases used in [2,16] span superspline sub-
spaces of 85(A), d > 3r + 2, that are less restrictive than SQ’QT(A) but
also lack nestedness for nested triangulations.

Recently constructed [10,11] stable locally supported bases for S (A),
d > 3r + 2, solve this problem. Moreover, a construction of stable locally
supported bases for the full spline spaces over regular triangulations of
polyhedral domains in n > 3 variables is also available [7] if d > r2™ + 1.
A certain drawback of these constructions is the fact that the dimension
of 85 (A) is instable since it depends on the geometry of the triangulation
[18,20], thus allowing sudden changes in the number of basis functions
as certain vertices are slightly perturbed. Computational aspects of this
situation were discussed in [8] and numerical evidence was provided show-
ing that despite the instability of the dimension the basis splines can be
efficiently computed. However, it may be desirable to work with nested
subspaces of Sy (Ay) with stable dimension.

In this paper we present a construction of locally supported bases
(sgn])ign for certain nested subspaces S5(Ay) of S5(A,) if d > 4r + 1.
These subspaces satisfy

S (An) C S5(An) C Sh(An), n=0,1,..., (2)

and therefore include all polynomials in P4. The dimension of 55 (Ag) is
independent of the geometry of A,. Moreover, the sequence of bases is
locally L,-stable in the sense that for all choices of the coefficient vectors
¢ = (¢)ier, , and for each triangle T' € A,,,

Kl aly < 1Y easil,m < Kallelr, @l (3)
i€l (T)

with constants K1, Ko depending only on r,d and 6, where

1,(T):={i€l,: T Csupp sgn]}.
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Obviously, a locally L,-stable basis is always locally linearly indepen-
dent, i.e., for each T' € A\,,, the functions in

(s 2 i€ I(T)}

are linearly independent. Since s£"1|T coincide with some polynomials in
Py, it follows that #I,(T) < (d;rz), and hence, a locally L,-stable spline
basis is also L,-stable in the sense of (1).

We recall that local stability is a property of B-splines and finite-
element bases, whereas it was shown in [10,11] that stability and local
linear independence are not compatible in general for the bases of the full
spline space S;(A) in two variables.

As a simple example to show that local linear independence and stabil-
ity together do not necessarily imply local stability, consider the univariate

spaces S, = span{s[ln], S[Qn], sgn]}, n=1,2,..., where
gl =t tef0,1], Jnl _ J 0, tel01],
70, te[-1,0] 2 7\ —t, te[-1,0]

[n] _ (1 - t)/nv le [07 1]7
% = {—(1+t)(t—1/n), te[-1,0].

(For more on locally linearly independent bases, see e.g. [6,12,13].)

§2. Spaces S}(A,,) and Construction of Bases

Let V,, and &,, be the sets of all vertices and all edges of the triangulation
A, respectively. Denote by F,, the union of all edges e € &£,. Since the
triangulations A,, n = 1,2, ..., are obtained by consecutive refinements of
Ag, we have

VoCWV C---CV, C---,

EcyCE,C---CE,C---.

Let

Vo=0, Vu:=Va1U[Vu\Vu1)NE,_1NintQ], n=1,2,....

For any v € U, cn V., let ny = min{n : v € f/n} Obviously, there is a
unique edge e, of A, _1, with adjacent triangles T, , T, € A, _1, such
that v lies in the interior of e,,. We set

SH(An) ={s €8y (A,): s€C¥(v) forallv e V,\Vy,, and
sl € C*"(v), slp- € C*"(v) forall v € V,}.
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It is easy to see that (2) is satisfied and that the spaces are nested,
SH(Ap_1) € Sh(A), n=1,2,.... (4)

To show the latter, we suppose that s € 35 (Ap—1). Then s € S (Ap_1) C
Si(Ay). Ifv e V., then either v € V,,_1, or n, = n, T.r, T, € Ap_qandv
lies in the interior of the common edge e, of these two triangles. Obviously,
in both cases s+ € C?"(v), Sl € C? (v). If, otherwise, v € Vy, \ Vy,
then either v € V,,_, \f/n_l, orv € Q\E,_1,0rv € IN\ V1. In all
three cases s € C?"(v).

We first determine a basis for the dual space (S}(A,,))* by using usual
nodal functionals. Let D, and D_.. denote the derivative in the direction
parallel or perpendicular to an edge e € &,, respectively. We will also
need the same notation De,, D1 for the special edge e, defined above for
each v € V,,. The linear functional evaluating at £ € © any function f
continuous at £ will be denoted by J¢.

Consider the set

N=(Um)u (U)o U ar).

vEVy, ec&, TeA,

of nodal linear functionals on S~§(An), where for each T = (v1,v9,v3) €
Ap,
1101 + 1202 + 1303

d
for each edge e = (vy,v2) € &y,

Er={{=

D1t iet+iz=d, 1,199,053 > T},

Ne={0¢D?, : £€Ecy, q=0,...,7},

e,q — {f:

ilvl + ig?)z

d

and for each vertex v € V,, the set N, is defined as follows. If v € V,, \ Vo,
then

(1]

: ’i1+i2:d, ’1:1,’1:2>27‘—q},

Ny ={6,D2Df : o+ B < 2r}.
vaef)n, then
/\/'UZ{(SUDSUDE#: a+p<2r g<r}
U{(SjD‘jﬂDi: a+p<2r, B>r+1}
u{d;ngvaL ca+8<2r B>r+1},

where §F f 1= b (f|72)-
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Theorem 1. The set N is a basis for (S;(A,))*.

Proof: We first prove that A is a spanning set for (8~§(An))* This
will follow if we show that s = 0 for all n € N implies s = 0 whenever
s € Sg(An). Given a triangle T' € A,,, with vertices v, v3,v3 and edges
e1, €a, e3, consider the set

N(T) = (QN (T)) U (ON) UNT, (5)

=1
with N, (T) := N, if v € V, \ Vy,, and

Ny(T) :={6,DE D’ : a+p<2r, B<r}
(0fD2DP . a+pB<2r, B>r+1}, T CT,
(0;D2DP : a+p<2r, f>r+1}, T CTy,

if v € V,. Clearly, s = 0 for all € N(T) implies that the polynomial
pr = s|r satisfies homogeneous interpolation conditions of the standard
interpolation scheme used to define finite elements of the space 8;’2T(A),
see e.g. [21]. Therefore s|p = 0 for each T, and s = 0.

We now prove that N is linearly independent. To this end, we show
that for any a = (a,)nen € R#*V | there exists a spline s € Sh(Ay) such
that

ns = ay, all np e V. (6)

We define the polynomial pieces pr, T € A,, using the finite-element
interpolation scheme mentioned above, such that for each T' € A,,,

npr = a,,  alneN(T). (7)

Setting s|7 = pr for all T € A,,, we have to show that the piecewise
polynomial function s lies in Sg(An).

Let v € V, \]7”, and let 71,7 are any two triangles attached to v.
Since N,, C N (T1) NN (T3), we have by (7),

5ngD5pT1 = 5ngD5pT2, all o + 8 < 2r,

which ensures that s € C?"(v). If v € V,, then for any two triangles T, Ty
attached to v,

8,02 D° pr, = 6,D2 D’ pr,, alla+pB<2r, B<r.
Moreover, if either Ty UTy C T, or Ty U T, C T, then

6,D¢ D2, pr, = 6,08, DY, pr,,  alla+ B < 2r,
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which implies that s+ € C?*"(v) and S|y € C?" (v).
Let e = (v1,v3) be an interior edge of A,,, with adjacent triangles
Ty,T,. From the above it follows that for all a4+ 8 < 2r, 8 <,

5U1D2D5J‘pT1 - 6U1D:DgipT2’ Ou, D:DELPT1 = 5U2D3D£¢pTz.
Moreover, since N, C N (T1) N N (T3), we have
5£D3LPT1 = 5£D2LpT2, £€EEeq q=0,...,m

This implies that for each ¢ =0, ..., r, the univariate polynomial

D= D;IJ_ (pT1 - pTg)‘e
of degree d — q satisfies homogeneous Hermite interpolation conditions
D¢ p(v1) = Dip(ve) = 0, w=0,...,2r —gq,
p€) =0, allfeE,,
Therefore, p = 0, i.e.,
DgJ_pT]_‘e :DngT2|e, q=0,...,m,

which shows that s is r times continuously differentiable across e. Since
s € §)(Ay), (6) follows from (7), and the proof is complete. O

By counting the number of functionals in each N,, N, and N7, it is
easy to check the following dimension formula,

d—3r—1 (r+1)(2d—"Tr —2)

dim S (A,) = ( ; )#An + 5 #En
(8)
N (27“;— 2) Syt (r —; 1) 47,

which shows that the dimension is independent of geometry.
The desired basis (57[7"])776 ~ for 8(A,) can be determined by the
duality condition
us%n] =6, all u,n e N. (9)

Arguing similarly to the first part of the proof of Theorem 1, it is easy to
show that

sl #£0  only if neN(T), (10)
which in particular implies that
T, if n € N for some T € T,,,
supp 37[7"] C ¢ star(e), if n € N, for some e € &,, (11)

star(v), if n € N, for some v € V,,

where star(e) and star(v), respectively, denote the union of all triangles in
A, attached to an edge e or vertex v, respectively.
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Theorem 2. The above constructed sequence of bases (sg,"])ne N, N =

0,1,..., is locally Ly-stable, 1 < p < oo, after a suitable renorming.

Proof: By (10), we have I,(T) = N(T'), where
I.(T):={neN: T Csupp 57[7"]}.

Since #N (T) = (“1?), we have

d+2
By cnsL"]an(T)s( ) max eyl 2.
N (T) 2 neN(T)

The functionals in N (T') constitute a standard finite-element interpolation
scheme, see e.g. [21]. Therefore, the general estimates for the norms of
the finite-element interpolation operators [4] imply that

1|5 ) < EahE™, (12)

where K; depends only on r, d and 6, hy denotes the diameter of T', and
q(n) is the order of the derivative that defines 7. On the other hand, by
the Markov inequality, we have for each y € N (T),

eul=n( X est?) <Kahz"l Y sy, (13)
neN(T) neN(T)

where K5 depends only on d and 6. Therefore,

_ d+2
KL < E a(m) g[n] <K .
2 eN(T) ol <1 nEN (T) o e < K nEN(T) )

Since T' C supp 51[;1] and supp s%"] is at most the star of a vertex, we have

hr < h, < Kshr, (14)

where h,, denotes the diameter of supp 37[7"], and K3 depends only on 6 (see

[16]). Therefore, we conclude that the sequence of bases

(h;q“’)s%"])nej\/, n=0,1,...,

is locally L.-stable, which completes the proof for the case p = oo.
Let 1 < p < oo. In this case we set

aln] . -1 — n
sl .= A-1/ppaln) gl
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where A, is the area of supp s%n]. Then
Ar < Ay < K4Ar, (15)
where A7 is the area of T', and K4 depends only on 6. We have
Y c,,37[7"]||1£p(T) - / Y st
nEN (T) T nen(r)

< AglsPUE_ o NP S ey,
neEN(T)

which by (12) implies that
n 1
1> eashlle,my < KsAd"hE™ el (16)
neN(T)
with a constant K5 depending only on r, d and #. On the other hand,
since
Z Cnsv[vn”T
ne€N(T)

is a polynomial of degree d, we have for any y € N(T) by (13) and a
Nikolskii-type inequality,

el < Ko™ 3" epstln . my
neEN(T)

SKGA;l/ph;q(n)“ Z CnS%n]“Lp(T)a
neN (T)

where K¢ depends only on d and 6. Therefore,

lelverylly = € Y leul”)M?

REN(T)

< #NOYWYPKeATPR ) Y epsn, o).
neEN(T)

Since #N(T) = (d;ﬂ), this last inequality together with (14)-(16) imply

the local L,-stability of the sequence of bases
("Mpen,  n=0,1,.... O
Finally, we note that the stability of the bases and the fact that
PsC Sy(A,), n=0,1,...,

can be used in a standard way (see[16]) to show the optimal approximation
power of the spaces Sj(A,).
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