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Abstract

‘We discuss the relationship between the norm of the local discrete least squares polyno-
mial approximation operator, the minimal singular value o, (Pz) of the matrix Pz of the
evaluations of the basis polynomials, and the norming constant of the set of data points
= with respect to the space of polynomials. Since these three quantities are equivalent up
to bounded constants, and since oy,i,(P=) can be efficiently computed, it is feasible to
use opmin(P=) as a tool for distinguishing good local point constellations, which is useful
for scattered data fitting. In addition, we give a simple new proof of a bound by Reimer
for the norm of the interpolation operators on the sphere and extend it to discrete least
squares operators.

1 Introduction

Let © be a bounded domain in R%, d > 1, and let & = {&1,...,&n} be a set of scattered
points in Q. Given the values f|z = (f(£1),-- -, f(&m))T of an otherwise unknown function
[ :Q = R, we want to reconstruct f from these data. The least squares method consists
in choosing some linear independent functions pq,...,p, on Q, n < m, and computing
the coefficients a1, ..., a, € R that minimize the /5 norm of the residual on Z,

It = plslle = (31760~ pi?)

with p = a1p1 + -+ - + appn, € P := span{p1,...,pn}. Let P|z := span{pi|z,...,pnlz}
If dimP|= = n, then the least squares solution is unique, and we denote it by Lp = f.
Note that the minimum norm solution available in the case of a rank deficient problem
(dim P|z < n) seems less useful since in general it does not reproduce the elements of P
exactly.

The computation of least squares approximation Lp = f of f is expensive if m and
n are large. To obtain a scattered data fitting algorithm with linear complexity with
respect to the size of data, a two-stage method [8] can be employed which consists in
1) covering the original domain Q with a number of subdomains €} each containing
only a small subset Z; = EN Qy of E, computing local approximations to the data in
Ek, and 2) using the information obtained from these local approximations to build the
final approximation of the (possibly huge) original data set. The least squares method
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can be employed in the local approximation stage, especially to deal with “real world”
data usually contaminated with errors or just containing undesirable “high frequency”
components.

If P is chosen to be the space Hg of algebraic polynomials in d variables of a suitable

_ (d+q . . . . oy .
) - b
degree q, then n = ( P ) To achieve high approximation order, it is desirable to choose

q such that n is only a little smaller then m. However, this is not always possible due to
the rank deficiency or ill-conditioning of the least squares problem, which is especially
difficult to control if &, ..., &, € E are unevenly distributed in Q. This difficulty can
in principle be overcome by constructing, for each Zj, a suitable subspace of higher
degree polynomials (least interpolation space [2]). If, however, the polynomial degree
is not allowed to exceed a fixed small value, then a common practical approach is to
choose larger sets 2 C =, with m substantially greater than n, see e.g. [4] where it is
suggested to use for local least squares approximation m = 11 points if P = II2 with
n = 6 and m = 15 points if P = I12 with n = 10. However, even these higher m provide
no guaranty that the matrix

PEk ::[pj(@):izl,...,m, j:l,...,n]

of the local least squres problem will be always well-conditioned. Moreover, for some
data, this method may lead to the use of inappropriately distant points for the local
approximation.

The purpose of this paper is to draw attention to the fact that the conditioning of
the matrix Pz, is not only the issue of numerical stability of the computation of least
squares. Indeed, the reciprocal of the minimal singular value o, (Pz) of Pz provides
a bound for the norm of the least squares operator Lp = if both m and n are small.
Therefore, the approximation power of local least squares depends on opin(Ps) and
the best approximation from P. Since oy (P=) can be efficiently computed for a small
matrix Pz by well known numerical algorithms, it is feasible to use it as a tool to
decide whether a particular portion of data is suitable for building local least squares
approximation from P with reasonable approximation power. If omin(Pz) is too small,
then either = or P should be modified, e.g. by adding more points to = or using an
appropriate subspace of P. A two-stage algorithm for fitting large irregularly distributed
scattered data sets employing the conditioning of the local observation matrices Pz, is
studied in [3, 5].

The paper is organized as follows. In Section 2 we discuss the relationship between
the norm of the discrete least squares approximation operator, the minimal singular
value onin(P=), and the norming constant v(P,E). As a by-product, we obtain a new
proof of a known bound for the norm of the interpolation operators on the sphere [7],
and extend it to the discrete least squares operators. Section 3 illustrates the above
concepts in the univariate case, when they are also related to the separation distance of
=, while Section 4 is devoted to a discussion of the least squares multivariate polynomial
approximation.
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2 Bounds for ||Lpz| and approximation error

Let p1,...,pn be linearly independent continuous functions on Q C R? spanning a linear
space P. Since all norms on a finite dimensional linear space are equivalent, there are
positive constants K7, K5 such that

n
Killall < 1) ajpslle@ < Kollallz (2.1)
=
for any coefficient vector a = (ay,...,a,)T € R".

Given E = {&,...,&n} C Q, we consider the matrix Pz € R™*™ as defined in the
introduction. Obviously, rank Pz = dim P|z. If Pg has full rank, then dimP|z = n,
and the least squares approximation Lp =f is uniquely determined, giving rise to the
operator Lp = : C(2) - P C C(Q).

It is easy to see that Lp = exactly reproduces the elements of P, i.e.,

Lpz=p=np, all p e P. (2.2)
Therefore, a standard argument shows that

lf = Lpzflle < A+ ILp ) E(f,P)cw), (2.3)

where E(f,P)c(q) denotes the error of the best approximation of f from P in Chebyshev
norm,
E := inf — .
(f,P)e) o IIf = pllc@)

Thus, an estimate for ||Lp z|| immediately gives an upper bound for ||f — Lp = f||c(q)-

The norming constant v(P,Z) of E with respect to P [6] can be defined by
=) = mi = ) 2.4
v(P,8) = min [Iplzllec/lIPllc @) (2.4)

Given any matrix A, we denote by omin(A) the minimal singular value of it,

Omin(4) = ”;r”lir_ll | Azl
s

Recall that if A has full rank, then o, (A) = ||A1]|5", where A* is the pseudoinverse
of A, see e.g. [1].

Theorem 2.1 Ifrank Pz = n, then

Ki/omin(P=) < |ILpgll < Kov/m/omin(Pz), (2.5)

1/v(P,E) < |Lpzll < v/m/v(P,E), (2.6)

K (P,E) < omin(Pz) < K2v/my(P,E). (2.7)

Proof: We first prove (2.5). Let Lp =f = Z?:l a;p;. It follows by a well-known result
in numerical linear algebra that the vector a = (ai,...,a,)” can be computed as the

product of the pseudoinverse P3 of P= with the vector f|z. Therefore,
lall = I1P£ flzll2 < IPF Izl flzll2 = o (Pe)ll flzl2-
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Since [|Lp=fllo@ < Kollall and [|flzlls < v llflzllee < VA | fllcc): the upper
bound in (2.5) follows. To prove the lower bound in (2.5), we choose a function f € C(Q)
such that

1P flzllz = 1P 12l Flzllzs (1 F1zlloo = IFllo)
which is obviously possible. Then by (2.1) we have

1Lpzfllcw = KillPE flzll: = Kiogi, (Pl flzll,
which implies the desired lower bound since || flz|2 > || flz|loo = || fllc()-
Since ||Lpzfllc) < v~ (P,E)|[(Lp,zf)|zllso, the upper bound in (2.6) follows by
I(Lref)lzlle < (L zflellz < [Iflzllz < vmllfllow)-

To prove the lower bound, we denote by 5 an element of P for which the minimum in (2.4)
is attained and choose a function f € C(f2) such that f|z = p|z and || f|lc@) = ||f|zlco-
Then by (2.2),

ILp 2 fllc@) = lIBllc@) = v (P, E)lIblzllo = v~ (P, E)lIfllo),
which implies || Lpz| > v=!(P,E).

We finally establish (2.7). For any p € P, let p = Z;;l ajp; and a = (ai1,...,a,)7T.
Then p|z = P=a and hence

Iplzllee < lIP=all2 < v/m [|plzlloo-

Since
omin(Pz) = min ||Pzall2/llal2,
(2.7) follows by (2.1). O
In view of (2.3), the upper bound in (2.5) implies

If — Lp=fllo) < (1 + Kov/m/omin(P=))E(f, P)c(a), (2.8)

which shows that the approximation power of discrete least squares proportionally re-
duces if omin(Pz) (or v(P,E)) is small. We will discuss some practical consequences of
this fact in the next two sections.

Although v(P,E) gives tighter bounds for ||Lp zl|, omin(P=) has a clear practical
advantage that it is easily computable by using e.g. the singular value decomposition of
the small “local” matrix Pz. On the other hand, the norming constants were used in [6, 9]
to derive estimates for the approximation error of radial basis function interpolation and
moving least squares, respectively.

Remark 2.2 If py,...,p, is an orthonormal basis for P, then |lallz = ||pllr,), P =
> =1 a;jpj, and the constants K1, K in (2.1) are closely related to Nikolskii constants
of the space P, namely,

Ki=N;L(P), Ks= Nga(P),

2,00
where
Nyy o (P) = gleag||P||qu(9)/||P||Lq2(Q), 1<q1,02 < 0.
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In particular, if @ = S?-1, the unit sphere in R¢, and {p1,---,pn} is the set of spherical
harmonics forming an orthonormal basis for the space P = ’Hfli of spherical polynomials
of degree ¢ in d variables, then it is not difficult to prove that Ko = Noo,g(’Hg) =
\/n/|S41|, where |S9~!| denotes the surface area of S?~!. Therefore, for any set = C
S9! with #= = m > n, we have by (2.5),

1 L3g 2l < y/nm/[STH/omin(Pz), (2.9)

which recovers in the case of interpolation (m = n) an error bound by Reimer [7]
originally proved by using Lagrangian square sums (see also [10]).

3 Univariate polynomials
Let Q be an interval [—h, h] on the real line R, and let

pit)=(/hY~,  j=1,...,n

Then P is the restriction to [—h,h] of the space II}_; of all univariate polynomials
of degree at most n — 1. By the well-known interpolation properties of the univariate
polynomials, rank Pz = n for any 2 = {&1,...,&n} C [—h, h], m > n, with distinct &;’s.
For any &' = {&,,...,&, } CE, let g= denote the separation distance,
1,
= = ) I]I;ilkl |€Z_7 —&irl-
The Lebesgue constant ||Lp z|| of the corresponding interpolation scheme can be easily

estimated as
n—1

2
L =1 < D EE— h =1 TL*]..
1p 2 € sy hfa=)
Since Z' may be any subset of E of cardinality n and since v(P,Z) > ||Lp =/|| 7, we get
UPE) < o (ham )
y — (n _ 1)' q:.,’ﬂ I’
where
g=,n -= mMax gz=r.
='cE
#= =n
Hence, by (2.3) and (2.6),
m 2n—1 o
1= Loy =l n < (4 Y2 a2 DB T Dopan: ()

This last estimate shows that the univariate least squares polynomials have the
approximation power of the best local polynomial approximation as h — 0 provided
h/qz,n remains bounded. However, if the scattered points &1, ...,&n € [—h, h] are clus-
tered together in at most n — 1 very tight groups, then ¢z, may be arbitrarily small,
thus forcing the right hand side of (3.1) to blow up. To figure out what happens to
IIf = Lgx _ =fllcj—n,p in these circumstances, we consider the following example.

n—1""



Oleg Davydov
Let h=1,n=2, f(t) =t> —1/2,and E = {=¢,0,£} for some 0 < £ < 1. It is easy
to see that Ly =f = —1/2+2¢?/3. Since E(f,II1)c[-1,1) = 1/2, we have

If = L = fllof-1, = 1/2+ [1/2 - 262 /3| < 2E(f, Hi)c[—m]

even though, by a simple calculation,

|Lm el = 1/3 +1/¢,
V2/0min(Pz) = 1/v(P,E) =1/qz2 =1/ + 00 as £ — 0.
This may contribute to the opinion that [|Ly: z||, omin(Pz), v(P,E) and ¢z, are not

the right quantities to describe the behaviour of the approximation. Indeed, as the three
points —¢&,0, & coalesce, qu,a f converges to a Hermite interpolation polynomial pro-
vided the entries of Pz as well as the values of f|z are exact. However, if we simu-
late “real world” data by adding to f(—£), f(0), f(£) normally distributed errors with
standard deviation 10™*, then the picture substantially changes. Table 1 shows that
I|f - Lz fllej=1,1) does blow up in this case. For comparison we also include in the
table the error of || f — L = f||c(—1,1) for the same contaminated data.

Table 1 Average (dpean) and maximum (dpay) of ||f — Lt = fllop-1,1) as well
as maximum of || f — Ly = fllc-1,1) (d%,.,) in 1000 tests with contaminated data

max
¢ | 1% 10% 10 100 1077  10~®
doon | 1.06 1.56 6.63 57.3 564 5630
di,. | 1.24 3.39 24.9 240 2390 23900
4. |1.00018 1.00018 1.00018 1.00018 1.00018 1.00018

Thus, if ¢z, is too small, we cannot practically achieve with least squares the ap-
proximation order of E(f, H}L_JC[— h,k] Simply because the points lying too close to each
other carry redundant information and we have at most n — 1 clusters of such points.
Therefore, we should adjust the polynomial degree to the given data paying attention to
the trade-off between higher approximation power of higher degree polynomials and the
“pollution” caused by the factor qg’ln that increases with n. In practice one may choose
maximal n such that h/g=, is smaller than a prescribed tolerance value 0 < E < oo.

4 Multivariate polynomials

The situation becomes substantially more complicated when we turn to multivariate
polynomials. Let Q be a bounded domain in R? and let {p1,...,pn}, n = (*19), be
a basis of the space P = Hfj of polynomials in d variables of total degree g satisfying
(2.1) on Q. (For example, we may consider a properly scaled standard power basis with
the center at a point in Q or the Bernstein-Bézier basis with respect to some simplex
overlapping Q or a significant part of it.) Let, furthermore, E be an arbitrary finite set
of points in 2 such that m = #=2 > n.

The first problem we face in the case d > 2 is that the matrix Pz may be rank deficient.
It is clear, however, that there is no practical difference between this situation and the



Approximation Power of Local Least Squares

one when Pz has full rank but is extremely ill-conditioned, i.e., opyin(P=) is very small.
Moreover, (2.8) shows that even moderately small opy,i,(P=z) may significantly reduce
the approximation power of Lp =. Clearly, the same can also happen in the univariate
case if gz, is too small. The real difficulty of the multivariate case seems to be that
simple characteristics of Z, like separation distance g= ., do not give much information
about the norm of Lp =. For example, six equidistant points on the unit circle in R?
are well separated and look reasonably distributed. However, they are not good for least
squares approximation from the space I3 since the matrix Ps is rank deficient. Suitably
perturbed, these points will give rise to the least squares operator Lng,s with a very

large norm. More generally, the norm of Lng,a will be large if the points in 2 C R? lie
“too close” to an algebraic hypersurface of order q.

If the data is comparatively dense in 2, namely the fill distance

hz,q = supmin |z — ¢
zeQ EEE
does not exceed some small positive constant depending on Q and the polynomial degree,
then the estimates of the norming constant V(HZ,E) given in [9] provide a bound for
||Lng‘n’5||, in view of (2.6). For example, if € is a ball of radius r, then v(I1¢|,Z) > 1/2
if hz o < 0.11r/¢%

On the other hand, without any density assumptions we can always rely on (2.8),
where omin(Ps) can be efficiently computed by well known algorithms of numerical lin-
ear algebra. In some sense, small o (Ps) indicates that the local data has “hidden
redundancies” ( e.g. too many points lying very close to the same straight line or the
same ellipse) that prevent it from carrying enough information for a “full power” ap-
proximation of the underlying function from HZ. Similar to the univariate case, but using
Omin(Pz) instead of g= ,, we can adaptively choose the polynomial degree according to
the following algorithm that has proven to be useful for scattered data fitting [3, 5].

Let @ ¢ RY = c Q, #= = m. Denote by PZ the matrix of the evaluations of
appropriate basis functions for Hg, q > 0, at the points £ € =.

Algorithm 4.1 Starting with some g = go > 0 such that (*59) < m, compute oryin(P2).
If 1/omin(P2) is smaller than a prescribed tolerance E < oo, then compute the least
squares Hg—appro:timation to the data in Z and accept it as a reliable approximation on
Q. Otherwise, repeat the same with ¢ = qo — 1 and succesively reduce the degree q to
go —2,...,0, while 1/omin(PL) > E. For ¢ =0 no comparison of 1/omin(P2) with E is
needed since ||Lng|n’5|| is bounded for any Q and E.

the above algorithm instead of 1/omin(P2), as it has been formulated in [5].

Note that, optionally, the condition number ||P2||2/0min(P2) of P2 can be used in
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