Locally Linearly Independent Bases for

Bivariate Polynomial Spline Spaces

Oleg Davydov Y and Larry L. Schumaker ?

Abstract. Locally linearly independent bases are constructed for the spaces
SQ(A) of polynomial splines of degree d > 3r + 2 and smoothness r defined on
triangulations, as well as for their superspline subspaces.

§1. Introduction

Given a regular triangulation A of a set of vertices V, let
Sy(A) :={se€ C"(Q): s|pr € Py for all triangles T' € A},

where Py is the space of polynomials of degree d, and €2 is the union of the triangles
in A. Suppose B := {B;};_; is a basis for S}(A). Then B is said to be locally lin-
early independent (LLI) provided that for every T' € A, the basis splines {B; }iex,
are linearly independent on 7', where

Yr:={i: T Csupp(B;)}. (1.1)

Since S5 (A) contains the space Py of polynomials, B being LLI is equivalent to the
condition

d+2
#Yr =dimPy = ( ;— ) for every T € A. (1.2)

For a discussion of various equivalent definitions of local linear independence, see
[10,15].

Locally linearly independent bases play an important role in the theory of
interpolation and almost interpolation by multivariate splines, see [14,15]. They
are also of interest since an LLI basis B for S} (A) is a least supported basis in the
sense that it is optimal with respect to the size of the supports of the B;, see [7].

Locally supported bases have been constructed for the spline spaces Sj(A)
and their superspline subspaces in [3,4,16,17,20,24], but they are mostly not LLI,
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see Remark 8.2 below. Recently, LLI bases have been constructed for the spaces
Si(A) (see [10]) and for certain superspline spaces (see [11,14]).

The main purpose of this paper is to construct LLI bases for S;(A) for all
d > 3r + 2, and for the entire scale of superspline spaces discussed in [17]. The
paper is organized as follows. In Sect. 2 we treat the space Sg (A) separately as
a means of introducing some needed notation. Then in Sect. 3 we show how to
use Bernstein-Bézier techniques to handle the spaces S}(A) (the results in [10] are
based on nodal methods). In Sects. 4 and 5 we construct LLI bases for splines
on cells. Finally, the main results on Sj(A) and its superspline subspaces are
established in Sect. 6 and Sect. 7, respectively. Sect. 8 is devoted to a few remarks.

§2. The space SJ(A)

For the sake of completeness and in order to set some notation, we briefly describe
the situation for the spline space S9(A). We make use of standard Bernstein-Bézier
methods as in [3,4,16,17]. Given a triangle T' = (v1, v, v3), the points

v, + jug + kv o
o= R it k=,

are called the domain points. Fach polynomial of degree d can be written in the
Bernstein-Bézier (B-) form

— d
p= E CijkBijk7
i+j+k=d

where Bfljk are the Bernstein polynomials of degree d associated with the triangle.

We write Da for the union of all domain points where repetitions (those on
the edges and at the vertices) are removed. We recall that a set M := D is called
a determining set for S C SY(A) provided that for all s € S,

A¢s=0forall{ € M implies s=0,
where A, is the linear functional defined by
Aps = the B-coefficient of s associated with 7.

M is called a minimal determining set for S provided it is the smallest determining
set for S. The following lemma is well-known, see [3].

Lemma 2.1. Suppose M C D, is a minimal determining set for a spline space S.
For each £ € M, let B¢ be the unique spline satisfying

)\nt = (55777, alln e M. (2.1)

Then B := {Bg¢}eem is a basis for S.



It is easy to see that M = D, is a minimal determining set for SY(A). The
corresponding dual basis splines of Lemma 2.1 have the following local supports:

T, if £ lies in the interior of T,
supp(Be) = { T1 UT,, if £ lies in the interior of 77 N1,

star(v), if £ lies at a vertex v,

where star(v) is the union of the triangles surrounding the vertex v. A simple
count shows that (1.2) holds for the basis B, and hence it is an LLI basis for S9(A)
(compare [14]).

§3. The space S}(A)

In this section we show how to construct an LLI basis for Sj(A) for d > 5 by
choosing an appropriate minimal determining set M. First we recall some standard
notation. Given a triangle T = (u, v, w), then for any integer 0 < ¢ < d, we define

RY(u) := {§Z;k ci=d—1{}

and
Dy (u) == {&: i>d— £}

with similar definitions for the vertices v and w. Associated with the edge e =
(v, w), we define

ET(e) = {&f,+ i <1}\[D;3 (v) U D3 (w)],
with similar definitions for the other two edges of T'. Finally, we set
CT={¢: i,5,k>2}.

Given a vertex v of A, we define the ring Ry(v) of radius £ around v and the
disk Dy(v) of radius £ around v to be the sets

Ry(v) := U{R{(v) : T is a triangle with vertex at v},

L
Dg(’U) = U Rz(’l))

We also need the well-known concepts of degenerate edges and singular ver-
tices. Suppose v is a vertex of A which is connected to vertices vq,...,v, in
counterclockwise order. If v is an interior vertex we define v,+1 = v; and vy = vy,
for convenience. Then an edge (v,v;) is called degenerate at v provided that the
two edges (v,v;_1) and (v, v;11) are collinear. An interior vertex v is called singular
if n = 4 and all four edges are degenerate at v.
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Theorem 3.1. Suppose d > 5, and let M be the following set:
1) For each triangle T, choose the (dg4) domain points in CT.

2) For each edge e, pick one triangle T which shares the edge e, and choose the
domain points in ET (e).

3) For each interior vertex v of A\ connected to vertices vy, . .., v, in counterclock-
wise order,

a) choose any three non-collinear points in D1 (v),

b) for eachi =1,...,n, if (v,v;) is nondegenerate at v, choose the point on
Ry (v) in the interior of the triangle (v,v;,v;y1). Otherwise, choose the
point Ry(v) N (v, v;).

c) if v is a singular vertex, add the point on Ra(v) in the interior of the
triangle (v, vy, va).

4) For each boundary vertex v of /A connected to vertices v1,...,v, in counter-
clockwise order,

a) choose any three non-collinear points in D1 (v),

b) foreachi=1,...,n—1, if (v,v;) is nondegenerate at v, choose the point
on Ry (v) in the interior of the triangle (v, v;, v;+1). Otherwise, choose the
point Ry (v) N (v, v;).

c¢) add the two points Ra(v) N (v, v1) and Ra(v) N (v, vy,).
Then M is a minimal determining set for S} (A).

Proof: It is straightforward to verify that M is a determining set for S}(A) and
that for each £ € M there exists a unique spline B satisfying (2.1). Clearly these
dual splines are linearly independent, and it follows that M is actually a minimal
determining set. O

It is easy to see that each of the basis functions in Theorem 3.1 has support
which is contained in the star of a vertex. This approach to definining a minimal
determining set M for S}(A) was used already in [3], but without specifying ex-
plicitly the determining sets in Dy(v) described in steps 3 and 4. These steps have
to be done carefully in order to get an LLI basis. The construction here is just a
translation to Bézier form of the nodal construction given in [10].

Theorem 3.2. Let M be the set constructed in Theorem 3.1. Then the set of
dual splines B := {B¢}¢e m forms an LLI basis for S} ().

Proof: Given a triangle T', let v;(T') denote the number of splines B whose
supports overlap T which correspond to domain points chosen in step 7 of the
algorithm. Since all of the splines constructed in step 1 overlap T,

n(T) = (d;‘l).
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In step 2 we get a spline B¢ which overlaps T if and only if e is one of the three
edges of T. Since the cardinality of E7 (e) is 2d — 9, this gives

vo(T) = 3(2d — 9).
Finally, it is also easy to see that the choices in steps 3 and 4 lead to
v3(T) +v4(T) =3 x 6 = 18, (3.1)
and it follows that
#57r = v1(T) 4+ vo(T) + v3(T) + va(T) = (d* + 3d + 2)/2,

which is the dimension of Py. O

§4. The space S},(A,) for an interior cell A,

In this section we construct an LLI basis for the space of splines S;;(A,) defined
on an interior cell /\,, i.e., a set of triangles surrounding a single interior vertex
v. Here p is an arbitrary integer such that p > r + 1. Suppose that the vertices
connected to v are v1,...,v, in counterclockwise order. Let Tl = (v, v;, v;41), for
1 =1,...,n, where we identify v,411 = v;.

To construct an LLI basis for S}, (A, ), we first decompose it into a direct sum
of certain subspaces. Let

Vem =49 € S, (Ay) : Dg‘Dgg(v) =0, 0<a+p<m-1}, (4.1)
for r +1 < m < p. Then clearly

SH(DY) =P @Viyy1 @& Vrp

Lemma 4.1. Suppose that for each 1 < 57 < p — r, the set {g%ﬂ), .. .,ggjﬂ,} is an
LLI basis for V, ,;. Then

{z°9?: 0<a+p<ryuU{gis,.. gl U ufgd g Y (a2)

is an LLI basis for S},(Ay).

Proof: Let
H,y; :=span{z®y? : a+p=r+j}

be the (r + j + 1)-dimensional space of homogeneous polynomials of degree r + j.
It is obvious that
Hr+jCVr,r+ja J=1...,p—r



Now fix a triangle T' € A,. Then for every g € V, ,1;, we have g|r € H,;, which
implies
dimV, ,4jlr =r+Jj+1, j=1,...,u—r.

Since {g%7 1), ey g,[{j,v} are locally linearly independent, it follows that

#{k: T C supp(g,[g;]v)} =dimV, rqjlr =7+j+ L.

Therefore, the total number of basis functions in (4.2) supported on T is

r4+2) &= . p+2 .
( 0 )-}-Z(r-i-j—l—l):( X ):dlmm,

=1

which shows (1.2) and proves our claim. O

We turn now to the task of constructing LLI bases for the spaces V; ,4; for
j=1,...,u—r. We make use of the cofactor approach used in [21-23]. Without
loss of generality, we may assume that v = (0,0) and the cell is rotated so that
all of the coordinates (x;,y;) of the points v; are nonzero. Let y + a;x = 0 be the
equation of the i-th edge e; attached to v, where o; = —y;/z;. Then every spline
g € S;,(Ay) can be written in the form

[ ] £ p—r j
glrin = Zzaﬁcykxj_k + Z Z Zagi,]c(y + aiac)“rka:j_k, {=1,...,n,

§=0 k=0 i=1 j=1 k=1
(4.3)
with .
nop-r j
SNl + asy ik =0, (4.4)
i=1 j=1 k=1
see [21].

For later use we define some linear functionals which can be used to pick off
the coefficients in (4.3). Let

X?kg = ngDi_k (glrtm) (v),
ngz]cg = :83[113: (DZ;kDg;_k (g|T[i]) (1)) - DZ;—-’CD;_’C (g|T[i—1]) (U)) s 1=1,...,m,

where T is identified with T[],

R el = S Uy ) A
T e \ GOk )

and D,_. denotes the derivative in the normal direction to e;, i.e.,

k2

D, = (1+4a2)"V2(D, + aiDy).
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Then for any spline g € SL(AU), ngg and ag,]g = []g for:=1,...,n. By

Theorem 2.2 in [23],
nj=dimV,,;=nj+ (r+j+1-je)y, j=1,...,p—r,

where e is the number of edges attached to v with different slopes. We distinguish
three cases.

Case 1: Suppose 7 +j+1> je. Thenn;=r+j+1+(n—e)j. If e=mn, i.e., all
edges attached to v have different slopes, then V, ., ; = H,;, and any basis for the
space of homogeneous polynomials H,, ; is locally linearly independent and can be
used in our construction.

Assuming that n—e > 1, we choose n —e indices £1,...,4, . € {1,...,n} such
that the associated edges ey, = (v,vy,), ¢ = 1,...,n — e, are pairwise noncollinear,
but each of them has a collinear counterpart among ey, £ ¢ {f1,...,4,_¢}. Then

the truncated powers
I 1(y+a .’E)T_l .’(y_}_aeix)::i-j’ i 1(y+a x)r—i—l (y_}_ae x)r—H (4_5)

liein V, ,yjforalli =1,...,n—e. We want to extend this set of 2(n —e)j functions
to an LLI basis for V, ,4;. To this end we first show that the following (n — e)j
homogeneous polynomials

Ny +agz) L (Y )" i=1,....,n—e, (4.6)
are linearly independent. Indeed, the identity

n—e J

Z Z cint? R (y 4+ ag, )P =0

=1 k=1

is equivalent to a system of r + j + 1 linear equations in (n — e)j unknowns

T _
AJ (Clja -++yC11y-- -, Cpn—e,jy - - '7cn—e,1) =0,

where flj = (Agel], ey ABE"’E]), and Ag-e"] is given by

1 0 \
( (") cu 1
(P)az (M
Al — 1 (4.7)
(Tl)ae
\(9)ap (Dt (gt
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Since n — e < e, we have
T+J+]—Z(n_e)]a

and hence ~
rank A; =min{r +j+1,(n—e)j} = (n —e)J.
It follows that the above system has only the trivial solution
Cikzo, iZl,...,TL—@, k=1,...,j,

which shows that the homogeneous polynomials (4.6) are linearly independent.
Therefore, there exist r + j + 1 — (n — e)j homogeneous polynomials

Hy,. .., Hr—l—j+1—(n—e)j € HT-}-j (48)

which extend the set (4.6) to a basis of H,;. We claim that the union of the two
sets (4.5) and (4.8) is a locally linearly independent basis for V, ,4;. Since for every
k=1,...,7and i=1,...,n — e only one of the two truncated powers

:Ej_k(y + Ckgim):j—k and z7° k(y + ay, x)r+k

is supported on a given triangle T € A,, the number of functions (4.5) and (4.8)
supported on 7' is r+j+1 = dimH,, ;. The statement now follows from the simple
facts that the total number of functions in (4.5) and (4.8) is n;, and that their span
contains H, ;.

Case 2: Suppose j(n —1) < 7+ j+ 1 < je. Then in particular n — 1 < e,
which implies n = e, i.e., all edges e; have different slopes. It follows that n; =
dimV, ,4; =nj. Let w :=nj — (r+ j +2). Note that 0 <w < j.

For each 1 < i < n, we first construct w+1 splines g; o, - .., gi o in Vy r4; which
vanish identically on exactly the one triangle T in A,. Given 0 < v < w, we
construct g;, by demanding that

Giv|Tti-1 =0,
X‘E‘zllgiu = 07 k= ]-7 -V, (49)
X g =0, k=1, w—n

Then for £ =14,...,14+n — 2,

giv|T[f](x7y) = Z jk(y+al T+k$'7 k:+ Z Za[”l] y+0£7)37 r—l—kxg k
k=v+1 n=i+1k=1

with coefficients satisfying

i+n—2 j
k,j—k n koji—k
Z Jk(y-l-az yrthgiTh 4y Za”y-ﬁ-an Ttk
k=v+1 n=i+1k=1

+ Z Jk Ny + ayrm)"tFai—F = 0.
k=w—v+1
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This last condition is equivalent to the linear system

A, (ag ]7 .Ez—i-l]’” ’ £z+n 2]’a5¢_1,w_u])r_p:07 (4.10)
where
Bl
= @l d), o= @, el ),

i,V 41 i+n—2 i—1l,w—v

Ay o= (AF AT g2l 4 ),
AE-T’] is defined as in (4.7), and Ag-n’ﬂ ] denotes the matrix obtained from AE-"] by
removing the last 3 columns. The linear system (4.10) has r + j + 1 equations
and 7 4+ j + 2 unknowns. As in [23] it can be shown that its matrix A;, has full
rank, which implies that g; , satisfying (4.9) exists (and is unique up to a constant
factor).

We now show that the functions g;, are linearly independent. To this end it
suffices to show that for each £ =1,...,n, {g; : i # £+1} are linearly independent
on T, Without loss of generality we only consider the case £ = n. Let

. _ S gu(zy), if (z,y)eTly---uTk,
biv(2,4) { 0, otherwise.

Since @iy |pin1 = giv | for all i and v, our assertion will be established if we show
that {¢i, };% ,—o are linearly independent on T, Assuming

= Zn: iciuqﬁiu =0 on T,

=2 v=0

we obviously have g € V. ,;. Suppose not all ¢;, are zero, and let ¢;; ., be the
first nonzero one in the sequence cag,...,Co0, -5 Cnos- -5 Cnw- Lhen

J
gl (z,y) = Z [“’](y+am )7"-|-ka ko Z Zagk y—i—anx)r_"k k|

k=vg+1 n=io+1 k=1
with aJ V 41 7 0. Now g|pm = 0 implies

[i0,v0] 4lio+1] [n]\ ( [io,v0]  [i0o+1] P T
(AJ Aj "'Aj )(aj ,G,J g e ey ] ) 0.
Since the matrix (A[-i ool ylio+1] -Ag.n]) has full rank and the number of unknowns
(n—19)j+j—vo < j(n—1) does not exceed the number of equations r + j+ 1, we
conclude that the linear system has only trivial solution, in particular ag.zf,’/]o 41 =0,
a contradiction which implies that all of ¢;,’s must be zero.
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To complete the construction of an LLI basis for V, ,;, we can now take any
set of splines g1, ..., gn(j—w—1) i Vyryj such that

{or}riy = Lo} o U{g oo

form a basis for V, ,y;. This basis is locally linearly independent since for each
1 < £ < n, the number of basis functions supported on the triangle T is

n—N)w+D)+n({j-w—-1)=r+j+1.

This completes the proof in Case 2.

Case 3: Suppose r +j + 1 < min{j(n — 1),je}. In this case nj = dimV, ,4; = nj.
We now define basis functions {gi, };2’),_, according to the following rule. Given
tand v, leti <11 <<t <i4n be such that the associated edges e;,,...,¢€;,
are pairwise noncollinear, with 4. < ¢ + n if e; has a collinear counterpart. Let
furthermore (¢y, ¢) denote the (r + j + 2)-th element of the sequence

(Gv+1),...,(4,7), (i1, 1), (51,7)y - -, (e, 1), - - -, (Gey )-

Since 7 + j + 1 < min{j(n — 1), je}, it is easy to see that i, < i + n. If for some
¢ < n the edge e;, is collinear with e;, then g;, coincides with one of two truncated
power functions

xj—u—l(y+aix):_+u+1 or :Uj_”_l(y—l—az )7‘+u+1

namely, the one with support T U --. U Tlic—1. Otherwise, Giv|Ta = 0 for £ =
ip,ig+1,...,2+n—1, and

J
givlrin (2, y) = ) a Sy + )i > Za[“ (y + ai, @) ik

k=v+1 v: i, <l k=1

for £ =14,...,4, — 1, with

J n—1 3
Z [z] (y+am)r+kx] k+Z Zayk y+a1‘v )r—i—k
k=v+1 v=1 k=1
J
+ Y e (y+ai,m) iR =0,
k=j—q+1

In the same way as in Case 2 it can be shown that g;, are uniquely defined
up to a constant factor and are linearly independent. It only remains to show that
for each 1 < £ < n, the number of basis functions supported on the triangle 7'
isr+j4+1. Let £+1—n <1, <--- < i, < ¥ be such that the associated edges
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€iys - - - » €, are pairwise noncollinear, and for each vy =1,... e, if e;, has a collinear
couterpart e;, with £+ 1 —n <4’ </, then i’ < i,. It is not difficult to see that,
according to the above construction, the basis splines whose support includes 7'
are exactly the first » + 5 + 1 elements of the sequence

Gic,j—15--+39ic,05---39i1,5—15---59i1,0,

and our assertion follows. Furthermore, let g; , be the (r 4 j + 1)-th element of
this sequence. For the purpose of an application in the next section, we note that
the set of basis functions whose support includes at least one of the consecutive

triangles
T Tl T with 44y <idp— 1+,

consists of the above mentioned r + j + 1 basis functions supported on T and an

additional 77 functions

9e4+1,05---59041,5—-15-++y9040,05- -+ 9l4n,5-1-

§5. The space S;,(A,) for a boundary cell A,

Suppose A, is a boundary cell, i.e., a collection of triangles sharing a boundary
vertex v. Using Lemma 4.1 as before, to construct an LLI basis for S},(A,), it
suffices to find LLI bases for the spaces V, ,4; for j =1,..., u—r. It is easy to see
that

nji=dimV,,4; =r+j+1+ (n—2)j.

We extend the boundary cell
A, ={TH . Tl
to an interior cell
A, ={rtl  rh=t gkl okt >,

such that v is the only interior vertex of A,. Suppose p is sufficiently large to
ensure that
r+j+1<min{j(n+p—1),jé},

where ¢ is the number of edges of A, attached to v with different slopes. Then an
LLI basis for

f)r,rﬂ‘ ={g € S,f+j(AU) : DgDyﬁg(v) =0, 0<a+pB<r+j-1}

can be constructed by using the algorithm of Case 3 of the previous section. More-
over, the remark at the end of the proof of Case 3 shows that, by enlarging p if
needed, we may assume that there are exactly r + j + 1 + (n — 2)j basis functions
whose support includes at least one of the triangles 71, ..., T~ Tt then follows
that the restrictions of these functions to the set TIH U ..U T form a locally
linearly independent basis for V; ;.4 ;.
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§6. The space Sj(A)

To construct an LLI basis for the space Sj(A) for d > 3r + 2, we first define a
convenient determining set following the ideas of [17] and the notation of [19]. Let

(6.1)

1
e w3

Given a triangle T := (u, v, w), let €&, be the domain points of 84(A) which lie in

T. Let

17k
T T . :
={&i>r, g>r k>

Associated with u, let

5] i-1
U U é-d 2r+i—1,r—j,r— z—i—]—i—l}

with similar definitions for the other two vertices of T. Associated with the edge
e := (u,v), we define

Te)::{é"g;-k: kﬁr}
|_J1, 1
GT U U{gd 2r4+i—1,r4+145,7r—0— J}

1=15=0
L5]i-1
T
= U U{£r+1+j,d—2r+i—1,r—i—j}

1=15=0

E”(e) i= F7(e) \ [ DI (w) U DT (v) U AT (u) U AT (0) UGE(e) UG (e)|,

(6.2)

with similar definitions for the other two edges of T'. We now describe a determining
set for S (A).

Lemma 6.1. Let M := MyUJ, D, (v), where M is the following set of domain
points:
1) for each triangle T, choose the set CT .
2) for each edge e, pick a triangle T sharing the edge e, and choose the set ET (e).
3) for each triangle T := (u,v,w), choose all three of the sets AT (u), AT (v) and
AT (w).
4) if the edge e := (v,w) of T := (u,v,w) is degenerate at v, replace the set AT (v)
by the set GE(e).
5) for each triangle T with an edge e on the boundary of Q, add the sets G¥ (e)
and GL(e).
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6) for each singular vertex v, add a set of the form AT (v).
Then M is a determining set for S(A).

Proof: It is straightforward to check (cf. [17,19]) that if s is a spline S} (A) whose
coefficients corresponding to the points in M are zero, then s = 0. O

Note that M, is part of a standard minimal determining set for Sj(A) (cf.
[17]), but M is not a minimal determining set for S;(A), since it contains too many
points in the disks D, (v). For each vertex v € A, let

m, = dim S} (A,).

We now construct m,, splines {B;,};=% in S;(A) whose supports are included in

star(v), and which satisfy
AnBin =0, all n e M, := M\ D,(v).

This can be done by applying the following lemma to the LLI basis {g;,};~y for
the space S},(A,) constructed in Sects. 4 and 5.

Theorem 6.2. Let v be a vertex of a triangulation A, and let A\, be the trian-
gulation of star(v). Then for any g € SL(AU), there exists an associated spline
s € 8} (A) with supp(s) C star(v) such that

Aps =0, all n e M,. (6.3)

Moreover, if g vanishes on any triangle of star(v), then so does s.

Proof: To define s, we first identify the domain points of S};(A,) with the domain
points associated with S}(A) and lying in D, (v). Then we choose the coefficients
of s corresponding to these domain points to be equal to the associated coefficients
of g. Then for all n € M,,, we set the coefficients A, s = 0. This assures that (6.3)
holds. Then all remaining coefficients of s are computed from smoothness conditions
in the usual way (cf. [17]). In particular, the coefficients in the rings of radius p+1,
it + 2, etc., are successively computed for all vertices of the triangulation, until all
coefficients in 2r-disks are known. After this the sets ET (e) \ |DI (u) U DI (w)

are processed for all edges e = (u, w). This procedure obviously implies that
)‘6‘9:07 all £¢Dd—r(v)7

and thus supp(s) C star(v). We now show that for every triangle T in star(v),
s|7 = 0 whenever g|r = 0. Suppose g|7 = 0. Then

Aes =0, all £ D,(v)NT.

Because of the choice of Mg in Lemma, 6.1, it is easy to see that the computation of
the remaining coefficients in 7" does not involve any nonzero coefficients in D, (v)\T,
which implies that s|lpr =0. O
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Theorem 6.3. For each vertexv € A, let {B; ,};~ be the set of splines in Sj(A)
constructed from the {g;,};~ of Sects. 4 and 5 using Theorem 6.2. In addition,
for each £ € My, let B¢ be the spline in Sj(A) which satisfies

)\nt = (55777, alln e M. (6.4)

Then the set
B :={Bg¢}eem, U\ J{Bin iy

forms an LLI basis for S§(A).

Proof: Using the linear independence of the g;, on the cells A, and (6.4), it is
not hard to see that the splines in B are linearly independent. Since the number
of splines in B is the same as the number of basis functions constructed in [17], it
follows that B is a basis for Sj(A). To show that it is an LLI basis, we now verify
(1.2).

Given a triangle T := (v1,v2, v3), we first examine the number of splines B
with & € My whose supports overlap 7. By the support properties of these basis
splines, it is clear that

#{& € Mo: T Csupp(Be)} = #C + 3#E + 9 #A4,

where #C, #E,#A are the cardinalities of the sets of the form CT,ET and A7,
respectively. This is precisely the number of domain points in 7" which lie outside
of the disks D}f(vj) for j = 1,2,3. Now by the local linear independence of the

{Gi0, }ind , it follows that

#{i: T Csupp(Biy,)} = #{i: T C supp(gi,;)} = (N ‘2F 2),

which is just the number of domain points in the disk DT (v;). We conclude that
the total number of basis splines whose supports overlap T is equal to the number
of domain points in T'. The number of such points is dim Py = (d'zw), and the proof
is complete. O

§7. The superspline space S;”(A)

In this section we show that for d > 3r + 2, an appropriate modification of the
above construction leads to an LLI basis for the space of supersplines

S;P(A) ={s e Sj(A): s CP(v) forallveV},

with p := {py }vev, where p, are given integers such that r < p, < d, and V is the
set of all vertices of the triangulation A. As in [17], we assume that

ky + ky < d for each pair of neighboring vertices v,u € V,

14



where
ky := max{py, p}, veV

with p as in (6.1).
Next we define a determining set M for S;*(A) similar to the set M defined
in Lemma 6.1. Given a triangle T' = (u, v, w), let

CT .= CT\ [DE, () U DE (v) UDY (w)].

Associated with u, let ~
AT (u) == AT (u) \ Dy, (uw),

with similar definitions for the other two vertices of 7. Associated with the edge
e := (u,v), we define

G1(e) := GI(e)\ D, (u)
Ghle) == GR(e) \ Df, (v),
E™(e) := E"(e) \ [D}, () UDF (v)],

with similar definitions for the other edges of T'.
_ We now define My in the same way as My in Lemma 6.1, except that we use
AT in place of AT, etc. Let

M := Mo U Dy, (v).

It is straightforward to check that M is a determining set for Sj(A), although it
is not minimal since there are too many points in the disks Dy, (v).

Following our construction for Sj(A), we now consider the spaces of super-
splines 5.7 (A,) on cells A, associated with vertices v. Here

S’:;pv (Ay) = va &b VT,PU+1 D P VT,kU7

where the space V., is defined in (4.1). Then using the LLI bases {gEL, cees ggj,v}
for V, ,, +; constructed in Sects. 4 and 5, the same argument as in Lemma 4.1 shows
that

{9} ={z%y?: 0<a+B<pyu{gll,....glll Ju--
U {ggks_pv], L. ’gll[lkv_l)v]

ky—py ¥

is an LLI basis for S;’”*(A,). Then arguing as in Theorem 6.2, it is clear that
for each spline g; ., € 7" (A,), there is an associated spline B;, € Sy”(A) with
supp(B; ) C star(v) such that

ApBivn =0, all neM,:=M\ Dy, (v).

Moreover, B; ,|7 = 0 whenever g; ,|7 = 0. We now have the following analog of
Theorem 6.3.
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Theorem 7.1. For each vertexv € A, let {B; , }i~, be the set of splines in S;*(A)

constructed above. In addition, for each & € My, let Be be the spline in 8;°(A)
which satisfies .
ApBe = 0¢ n, allm e M.

Then the set
B = {Be}, iz, Y UBio}in
v

forms an LLI basis for 8;°(A).

Proof: Arguing as in Sect. 6 for Sj(A), it is easy to see that B is a basis for
S7P(A). We now show that it is an LLI basis, by verifying (1.2). Given a triangle

T := (v1,v2,v3), we first examine the number of splines By with { € M, whose
supports overlap T. By the support properties of these basis splines, it is easy to
see that

#{¢ € .MVO : T C supp(Bg)}

is equal to the sum of the cardinalities of the sets of the form CT, AT, G, G%, and
ET. This is precisely the number of domain points in 7' which lie outside of the
disks DT (vj) for j = 1,2,3. Now by the local linear independence of the {9i 0, }va ,
it follows that

K
#{i: T Csupp(Biw,)} = #{i: T Csupp(gin,)} = ( ;2),

which is just the number of domain points in the disk D} (v;). We conclude that
the total number of basis splines whose supports overlap T is equal to the number
of domain points in 7. The number of such points is dim Py = (df), and the proof
is complete. O

§8. Remarks

Remark 8.1. Local linear independence was first studied for the integer shifts of
a box spline, see [6,9,18].

Remark 8.2. Except for the case of supersplines with p, > u (for all v) treated in
[17], none of the dual bases constructed in [3,16,17,20] are LLI. Indeed, the choice
of determining sets in the disks D, (v) in those papers leads to bases for which (1.2)
fails for some triangle T" attached to v.

Remark 8.3. The basis for the space S} (A) constructed in [4] is not LLI. To show
this, we consider a triangulation A with one interior vertex v and n > 5 interior
edges, where n is odd. It is easy to see that in this case the algorithm of [4] leads
to a basis for S}(A) such that each triangle T' € A lies in the supports of at least
n + 12 > 17 basis splines. Since dim P4 = 15, this basis cannot be LLI.
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Remark 8.4. A basis of splines is said to be stable provided that the size of a spline
can be bounded in terms of the size of its coefficients, and conversely. Stability is
important for applications, but not so easy to achieve. The classical star-supported
bases in [17] are only stable in the finite-element case d > 4r+1, p, > 2r. Similarly,
the LLI bases constructed here for S;”(A) are only stable when d > 4r + 1 and
py > 2r for all vertices. Stable bases for all spline and superspline spaces with
d > 3r + 2 have recently been constructed in [13] — see also [12] for the case r = 1.

Remark 8.5. It is shown in [12] that stability and local linear independence cannot
generally hold simultaneously. In particular, the stable bases for certain superspline
spaces constructed in [8,19] are not LLI since they fail to be least supported.

Remark 8.6. Our construction of a locally linearly independent basis can be easily
adapted to the spaces of splines and supersplines on a triangulation on the sphere or
a sphere-like surface introduced in [1]. Indeed, there is an isomorphism between the
space S,:’Up "(A,) and the corresponding space of homogeneous supersplines on an
orange, such that our basis splines for S,:’Up *(Ay) extend uniquely to homogeneous
basis splines, see the proof of Theorem 5 in [2]. The other steps of our construction
carry over in a straightforward manner, such that we get LLI bases for spaces of
homogeneous splines and supersplines on arbitrary trihedral decompositions. These
basis splines restricted to the sphere or a sphere-like surface obviously produce the
desired LLI bases.
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