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Abstract. A characterization of almost interpolation configurations of points
in terms of supports of basis functions is presented. Moreover, we show that
this characterization can be significantly simplified in the case of existence
of a locally linearly independent basis, so that almost interpolation sets can
be constructed by taking a point in a support of each basis function. Some
further results, including several equivalent definitions of a locally linearly
independent system of functions, are given.

1. Introduction and main results

Let U denote a finite-dimensional space of real-valued functions defined on
K C RY. The problem of describing those configurations of points

T={t,....,t,} C K, n=dmU,

(interpolation sets or [-sets), such that for any given real data {y1,...,yn}
there exists a unique function u € U satisfying

u(t;)) =y, 1=1,...,n,

has attracted considerable interest in recent years, especially for the case
when d > 2 and U is a linear space of multivariate spline functions.
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In contrast to the univariate case K C R, where all interpolation sets
T with respect to the classical spline spaces can be characterized by the
well-known Schoenberg-Whitney condition [17], it seems to be no reasonably
simple way to characterize interpolation sets in the multivariate case (see [8,
p. 136]). Recently, several sufficient conditions and methods to construct
such configurations for multivariate spline interpolation have been developed
(see [2, 7, 8, 16] and references therein).

A new approach to multivariate interpolation has been found by Sommer
and Strauss [18, 19]. They introduced the concept of almost interpolation
and gave a Schoenberg-Whitney type characterization of almost interpola-
tion configurations of points for (generalized) multivariate spline spaces on
polyhedral partitions, in terms of the dimensions of some restrictions of the
space [19, Theorem 1.3]. Davydov [10] has extended this result to arbitrary
finite-dimensional linear spaces of continuous functions on a topological space
satisfying some minor restrictions. Moreover, in [10, 18] general methods of
transforming a given almost interpolation set into an interpolation set are
given. (See also [11].)

Given a topological space K, denote by F'(K) the linear space of all real
functions on K. Let U be a finite-dimensional linear subspace of F'(K). A
set

T={t,...,ts; CK, s<dimU,

is called an almost interpolation set (Al-set) with respect to U if for any
system of neighborhoods B; of ¢;, 1 = 1,...,s there exist points ! € B; such
that 7" = {t|,...,t.} is an interpolation set ([-set) with respect to U; i.e.,

dimU),, = s,

where
Ul = {'u|K, cuelU}, forany K'C K.

In what follows we use the notations int K/, bd K’ and K for the interior,
the boundary and the closure of a set K/ C K, respectively. Given a function
u € F(K), we set

suppu:={t € K : u(t) # 0}.

Given a system of functions us,...,u, € F(K), we denote by

span {uy, ..., u,} = {Zaiui Da; € R}

=1
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the linear span of this system.
One of the formulations of the univariate Schoenberg-Whitney condition
says that for a system {By,..., B,} of the polynomial B-splines, a set

T={ti<---<t,}CR
is an I-set w.r.t. span{By,...,B,} if and only if
tie{teR:B(t)#0}, i=1,...,n,

(support property). It can be easily seen that Al-sets in this case are char-
acterized by the condition

t;esupp By, 1=1,...,n.

Sommer and Strauss [19, Proposition 1.5] gave a certain extension of this
weak support property to multivariate splines on polyhedral partitions. Using
the ideas of [10], we now present a generalization of their result to arbitrary
finite-dimensional spaces of real functions on topological spaces.

Theorem 1.1 Suppose that K is a topological space and U C F(K) is a
finite-dimensional linear space, dimU =n. Let T = {t1,...,t;} C K, s < n.
Then the following conditions are equivalent.

1) T is an Al-set w.r.t. U.

2) For each basis {u1,...,un} of U there exists some permutation o of

{1,...,n} such that
li €suppus(iy, t=1,...,s.

The main difference between Theorem 1.1 and the above-mentioned char-
acterization of Al-sets in the case of univariate B-splines is that each basis of
a multivariate spline space U has to be examined in order to check whether
a configuration 7' is an Al—set. It turns out that this drawback can be over-
come if U admits a locally linearly independent basis. A system of functions
{u1,...,u,} C F(K) is said to be locally linearly independent (LI-system) if
for any t € K and any neighborhood B(t) of t there exists an open set B’
such that t € B’ C B(t) and the subsystem

{u; : B'Nsuppu; # 0}
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is linearly independent on B’. The linear span of an L[-system is called
LI-space. (See Section 3 for the more general case of a locally finite system
of functions as well as a discussion of various definitions of L/I-systems.)
Next theorem shows that almost interpolation sets w.r.t. an arbitrary
LI-space can be characterized exactly in the same way as for B-splines.

Theorem 1.2 Let {uy,...,u,} C F(K) be a locally linearly independent
system and U = span {uy,...,u,}. Let T = {ty,...,ts} C K, s <n. Then
the following conditions are equivalent.

1) T is an Al-set w.r.t. U.
2) t; € suppusy, ¢t = 1,...,s, for some permutation o of {1,...,n}

Note that Carnicer and Pena [6] have shown that even [-sets with respect
to a finite-dimensional space spanned by a locally linearly independent weak
Descartes system of univariate continuous functions can be characterized by
the support property.

It follows from Theorem 1.2 that one can construct an Al-set with respect
to a given LI-system {ui,...,u,} by choosing a point ¢; in the support of
each function w;, ¢ = 1,...,n. Because of this, it is important to identify
those spaces of multivariate splines which admit an L/I-basis. In [12] we
gave several examples of such spaces, including shifts of a box spline, tensor
product splines, continuous splines on simplex partitions and bivariate super
splines.

The proofs of Theorem 1.1 and Theorem 1.2 are given in Section 2 and
Section 3 respectively, after some necessary preparations have been made.
In addition, Section 2 includes some general results on almost interpolation
sets, namely, an algorithm of constructing Al-sets w.r.t. a linear subspace
V C U when an Al-set w.r.t. U is given (Lemma 2.3 and Theorem 2.6) and
an algorithm of extending a given Al-set to an Al-set with more elements
(Theorem 2.7). Section 3 contains, apart from the proof of Theorem 1.2, a
result on the equivalence of several definitions of a locally linearly indepen-
dent system of functions (Theorem 3.4), a sufficient condition for local linear
independence which shows that usually it is enough to check this property
only inside the cells of the partition (Theorem 3.6), and a description of the
piecewise almost Chebyshev structure of any linear space of functions which
admits an I /-basis (Theorem 3.9).



2. Almost interpolation sets

Assume that K is a topological space and U denotes a finite-dimensional

subspace of FI(K), dimU = n.

Definition 2.1 Let K’ be any subset of K. By the local dimension of U on
K’ we mean

I-dimg U = inf {dim U, : K' C B, B open}.

We write I-dim; U instead of I-dimgy U/. The function ¢ : K — Z4
defined by ¢(t) := l-dim; U is evidently upper semicontinuous. Moreover,
it is continuous on an open everywhere dense subset Gy C K. For some
further properties of local dimension see Davydov [10]. Particularly, it follows
immediately from [10, Lemma 2.2] that

2.1)  Ldimgroge U < ldimge U + L-dimgen U — Ldimgongn U
for any K, K" C K.

With the help of local dimension it is possible to give a “local” charac-
terization of almost interpolation sets with respect to any finite-dimensional
space U.

Theorem 2.2 [10] Let T = {t1,...,t,} C K, s <n. Then T is an Al-set
w.r.t. U C F(K) if and only if

card 7" < l-dimp U
for any choice of a nonempty subset T' C T.

We note that Theorem 2.2 can be easily proved by using Rado theorem
on independent transversals (see, e.g., [15, p. 93]).

In the proof of Theorem 1.1 we will use the following lemma.

Lemma 2.3 Let U C F(K) be a finite-dimensional space, dimU = n, and
let V.C U be a subspace of U, dimV = n—1. Assume that T = {ty,...,t;} C



K is an Al-set with respect to U, s € {1,...,n}, and T = {tiy,...,t;,} is a
subset of T such that
ldims V=k—-1,

and

l-dimg V' > card T’

for any nonempty subset T' C T with cardT" < k. Then every set T \ {t;,},
3=1,...,k, ts an Al-set with respect to V.

Proof. Let T be an arbitrary nonempty subset of T'\ {t;}, card T* = m

for some m € {1,...,s — 1}. Suppose that card (7T* N T) =r. Then r < k
because ¢;, ¢ T*. Therefore,

ldimp, 7 V > 1.
Since the codimension of V in U is 1 and T* U T is an Al-set w.r.t. U,
l-dimy 7 V > l-dimp. 7 U — 1 > card (T*UT) =1 =m+k—r—1.
Therefore, in view of (2.1),

ldimp« V' > l-dimg. 7 V 4 dimpa 3 V = l-dims V
> m+k—r—1)+r—(k—1)=m=cardT™,

and the lemma follows from Theorem 2.2. W

Remark 2.4 The set 7' in Lemma 2.3 is uniquely defined by two conditions
l-dim; V = card T — 1,
l-dimp/ V > card T/,  VT'C 1.

Indeed, if there exist two different sets Tl, T,cT possessing this property,
then by (2.1) we have

l_dimTluTg V < l—dimT1 V+ l—dimT2 V- l'dimeTz |%
< (card T, — 1) + (card Ty — 1) — Card(Tl N Tz)
= Card(Tl U Tg) -2,

which contradicts the assumptions that 7' D TyUT; is an Al-set with respect
to U, and dimV = dimU — 1.



Proof of Theorem 1.1. We first show that 2) implies 1). Assume that T
fails to be an Al-set. Then, by Theorem 2.2, there exists T' C T' such that

d:=ldim; U < cardT =: d.

Let B O T, B open, such that dim U|B = d. Since dimU = n, there exist
linearly independent functions wuy,...,u,_4 in U which vanish identically on
B. Let us extend this system by some functions w,_g41,...,u, € U to a
basis of . By hypotheses, there exists a permutation o of {1,...,n} such
that

li €supp us(y, t=1,...,s.
Since d < d, it must follow that o(:*) € {1,...,n — d} for some ¢ € T.
Hence ¢;+ € supp uy(i+). But w,i«) = 0 on the open set B which clearly
implies that

T c K\ supp Us (iv),

a contradiction.

Let us show that 1) implies 2). We proceed by induction on n, assuming
that the result has been proved for any finite-dimensional space of dimension
at most n—1. Let T' = {ty,...,t;} be an Al-set w.r.t. U and let {uy, ..., u,}
be a basis of U. Set

V =span {uy,...,u,_1}.

If T'is an Al-set w.r.t. V (in particular, s < n — 1), then the result follows
immediately by the induction hypothesis. Suppose that 7' fails to be an Al-
set w.r.t. V. Then there exists a subset T = {ti,...,t;,} C T satisfying
the assumptions of Lemma 2.3 for some k € {1,...,n}. We observe that
Tn supp u, # ), because otherwise

l-dimy U = 1-dim; V < card T,
which contradicts the supposition that 7" is an Al-set w.r.t. U. Thus,
1, € supp uy,

for some j € {1,...,k}. By Lemma 2.3, T'\ {{;,} is an Al-set w.r.t. V, and,
by the induction hypothesis, there exists a permutation ¢’ of {1,...,n — 1}
such that

t, € SUpp Ug’(s) , izl,...,‘ij—l,
tiy1 € suppuyr(y, 1=15,...,5— 1.



Then the permutation o of {1,...,n} defined as follows,
o), =1, ii—1,
o'(i—1), i=4+1,...,n,

clearly satisfies the required property. W

Remark 2.5 We outline an alternative proof of Theorem 1.1 that relies on
Hall theorem on distinct representatives. By Theorem 2.2, T' = {ty,...,t;} C
K is an Al-set w.r.t. U if and only if

card 7" < l-dimp U, v1T'cT.
It is not difficult to check that this last condition is equivalent to

card T" < inf  card{s : T'N supp u; # 0}, vI'c T,

Uifi=1

where the infimum is taken over all bases {u;}"; of U. Now we fix a basis
{u;}"_; and set

A;:={j: t; € suppu,}, i=1,...,s,

so that
A; Cc{1,2...,n}, i=1,....s.

Then Theorem 1.1 follows from the Hall theorem that states the equivalence
of the conditions

card (U;er A;) > card [, VIc{l,2...,s},
and
there exist distinct representatives o(i) € A;, 1=1,...,5
(see, e.g., [15, p. 27]).

Lemma 2.3 can be also applied to the following problem. Given an Al-set
T w.rt. U C F(K) and a subspace V C U, find a subset 7' C T" which is an
Al-set w.r.t. V.



Theorem 2.6 Let U C F(K) be a finite-dimensional space, and let V C U
be a subspace of U, with dimU —dimV = p. Suppose that T = {t,,...,ts} C
K is an Al-set with respect to U, s > p. Then there exists a subset T C T,
card T > s — p, which is an Al-set with respect to V.

Proof. The theorem immediately follows from Lemma 2.3. B

We now describe an algorithm of constructing Al-sets and extending a
given Al-set to an Al-set with more elements.

Theorem 2.7 Assume that T = {t,...,t;} C K (0 < s < n) is an Al-set
with respect to U. Then there exists an Al-set T'C K with respect to U such
that T C T and cardT = n.

Proof. It suffices to find an Al-set 7' such that T C 7" and card T = s + 1.
If T'= (), take any € K such that u(f) # 0 for a u € U, and set

T .= {f}.
The statement follows immediately.
Let us consider two cases if s > 1.

Case 1. Suppose that
card T" < l-dimq/ U

for every nonempty subset 7" of T'. Then taking any point ¢ in K \ T' such
that u(t) # 0 for a u € U (which is possible since otherwise dimU = s < n),
we define

T:=TuU{i}

and, in view of Theorem 2.2, we have obviously obtained an Al-set with
respect to U.

Case 2. Suppose that
(2.2) card Ty = I-dimg, U

for some nonempty subset Ty of T. Then there exists Ty C T which is
maximal in the sense that

card Ty = l-dimg, U, and
T C T, if Ty C T and card Ty = I-dimgy U.
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Indeed, if T}, Ty C T are two sets satisfying (2.2), then by (2.1)

card (Té U Tél) < 1‘dimT(;uT5’ U < l—dimTé U+ l—dimTOu U — l‘dimTénTé’ U
< card Ty + card Ty — card (T, N Ty)
= card (T{UTY),

ie., ToUTY also satisfies (2.2).
Let B D Ty, B open, and

card Ty = l—dimTO U = dim U|B .
Since s < n, we then have
dimU|B <cardT =s < dimU.

Hence there exists & € U \ {0} such that « = 0 on B. Taking any point
t € K\ T such that 4(f) # 0, we set

T:=Tu{i}.

By Theorem 2.2, in order to show that T is an Al-set, we have to prove
the inequality
card 7" < l-dimypn U

for every subset T” of T'. This is obviously true if 7" = {{} or 7" C T'. Let
T" =T, U {i},
where Ty ¢ T. If Ty C Ty, then
card (Ty U {{}) = card Ty + 1 < I-dimg, U 4+ 1 < I-dimgy 5y U
since (1) # 0 and @ = 0 on B. Otherwise, by the choice of To,
card Ty < l-dimg, U.
Therefore,
card (Ty U {t}) = card Ty + 1 < l-dimyp, U < I-dimy, gy U,

which completes the proof. W
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3. Locally linearly independent systems

Although we are mostly interested in finite systems of functions and finite-
dimensional linear spaces spanned by them, the theory of local linear inde-
pendence can be developed for certain infinite systems.

Let K be a topological space. We say that a system of nonzero func-
tions U = {u,;}ier C F(K), is locally finite if for any ¢ € K there exists a
neighborhood B(t) such that the set

{i €I:B(t)Nsupp u; # 0}
is finite. Particularly, we can consider the infinite series
Zaiui(x), v €K,
el

taking into account the fact that for each fixed + € K only a finite number
of terms is nonzero. Denote by Span U the linear space

Span U := {Zaiui ca; €R forall 1€ I} .

el
It is quite clear that the local dimension
I-dimgr U = inf {dim U} _ : K' C B, B open}

is finite for any finite K’ C K when U = Span U. Particularly, p(t) :=
l-dimy; U := l-dimy,, U is well-defined for such spaces.

Recall that an infinite system of functions is said to be (algebraically)
linearly independent if any finite subsystem of it is linearly independent. In
the theory of shift-invariant spaces another condition of linear independence
has proved to be useful.

Definition 3.1 A locally finite system U = {u;}ier C F(K)is called globally
linearly independent if

Zaiui(;v) =0, x € K, implies a; =0 forall 1€ 1.
el
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Global linear independence was first studied by de Boor and Hollig [3]
for the shifts of a box spline and further investigated by other authors (see,
for example, [14] and references therein). In the case of the shifts of a box
spline global linear independence turned out to be equivalent to a stronger
condition of local linear independence (de Boor and Hoéllig [4], Dahmen and
Micchelli [9], Jia [13]). Some further references can be found in [12]. Since
definitions of this notion slightly vary from paper to paper, we define it here
in our own way which seems to emphasize its local nature.

Definition 3.2 A locally finite system U = {u;}ic; C F(K) is said to be
locally linearly independent (LI-system) if for any t € K and any neighbor-
hood B(t) of t there exists an open set B’ such that t € B’ C B(t) and the
subsystem

{u; : B'Nsuppu; # 0}

is linearly independent on B’. A linear space U C F/(K) is called LI-space if
U = Span U for some LI-system U.

Ben-Artzi and Ron [1] have constructed an example of a bivariate function
¢ such that integer shifts of ¢ are globally linearly independent on R?, but are
locally linearly dependent with respect to every bounded open set B C R2.

We now present a simple example of a finite-dimensional linear space of
continuous functions which admits no locally linearly independent basis and
therefore fails to be an LI-space.

Example 3.3 Let U = span {uy,us} C C[—1,1], where u,(t) = 1,

0, 0<t<d,
wt)={t-1 t<t<?

1 2

39 3 S l S la
‘Ug(t) = —‘UQ(—t>, te [—1,0] .

Given two nonzero functions uf,uy € U, it is easy to check that they are
linearly dependent in small neighborhoods of each of the following three
points: t; = —%, ty = 0 and t3 = %. On the other hand, for any nonzero
u € U at least two of the points 1,1, t3 are contained in supp u. Because of
this there exists 1 € {1,2,3} such that ¢; € supp uj N supp uj and hence uj

and wu} are not locally linearly independent.
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The next theorem gives some equivalent definitions of LI-systems. We
remark that Carnicer and Pena [5] have shown the equivalence of 5) and 6)
below in the case of a finite system of functions i.

Theorem 3.4 Let U = {u;}icr C F(K) be a locally finite system of func-
tions and let U := Span U. The following conditions are equivalent.

1) {u;itier is a locally linearly independent system.
2) I-dim; U = card{¢v € [ : t € suppu;}, for anyt € K.
3) I-dimgs U = card Ixs, for any finite set K' C K, where

I :={iel: K Nsuppu; #0}.

4) dim U|B = card Ig, for any open B C K such that Ig is finite.

5) Given any open B C K,

Zaiui(:n) =0, x € B, implies a;=0 forall i €lp.
el

6) supp <§ a,-uZ) = |J suppui, for any {a;}icr, with a; € R, i € I.
el el
a; 70

Proof. The equivalence of conditions 1) and 2) immediately follows from
the definitions.

Let us show that 2) implies 3). Suppose K’ is a finite subset of K. Then
clearly I = {i € I : K'Nsuppu; # (} is a finite set. Consider any open set
B D K’ such that

dim U, = dimg: U,
BNsuppu; =@ foranyi ¢ Ix:.

Since obviously
dim U|B < card Ig

Y

it will be sufficient to check the opposite inequality

dim U|B > card Ig .
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To this end we show that the functions Uil s 1 € Ik, are linearly independent.
Suppose that for some real a;, 1 € I,

Z aui(z) =0, z€B.

i€l
For each t € K, let

I(t):={t€el: tesuppu},
and let B(t) be an open neighborhood of ¢ such that

B(t) C B,
dim U|B(t) = l-dim; U ,
B(t)Nsuppu; =0 for any i ¢ I(t).
It follows from 2) that

dim U|B(t) = l-dim; U = card I ().

Hence, the functions Ui g gy i € I(t), are linearly independent. Because of
this, a; = 0 for all « € I(t). Since

U [(t) == [I{I,

teK'’

we have a; = 0 for all 2 € I, which confirms the linear independence of Ui 5
i € Igs, and completes the proof of 3).

We now show that 3) implies 4). Let B C K be any open set such that
Ig ={i € I : BNsuppu; # (0} is finite. It is clear that dimU|B < card Ip.
Assuming 3) to hold, we prove the opposite inequality. To this end we take
a point t; € B Nsupp u; for each i € Ig and set K’ := {t;};c15. Then

dim U|B > l-dimg+ U = card Ig» = card Ig .

Let us show that 4) implies 6). Suppose that 4) holds. Let

te supp(z ai;) .

€1
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Since the system {u;}ier is locally finite, there exists an open neighborhood
B of t such that Ig is finite. Therefore,

te supp(z a;u;) C U supp u; ,

i€l ie;}(i)’
a;

so that
supp(z a;u;) C U supp u; .
iel =
a; #0
Let now

t ¢ supp(Y  aiuy).
€]
Then there exists an open neighborhood B of ¢ such that Ig is finite and
Z aui(z) = Z aui(z) =0 forany z € B .
iel iclp
By 4) the functions
uz-|B s 2 € [B s

are linearly independent. Therefore, a; = 0 for all 2+ € Ig. If t € suppu;,
then ¢ € Ig and a; = 0, so that

t¢ ) suppui,
eI
a; #0

which proves 6).
Next, we show that 6) implies 5). Assume that 6) is satisfied. Let an
open B C K be given. If

Zaiui(fﬂ) =0 forany v € B,

el

then, by 6),

B C (K \ supp Z aiui) = ﬂ (K \ supp u;) .

=3 i€q
a; #0
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Thus, B Nsupp u; = {} for any ¢ € I such that a; # 0, which proves 5).
Since 1) evidently follows from 5), the proof is complete. B

We are now in position to give a very short proof of the second of our
two main theorems, Theorem 1.2.

Proof of Theorem 1.2. It is clear by Theorem 1.1 that 1) implies 2).
Consider now any subset 7' = {t t;,} of T. Assume that 2) holds.
Then

TEREE)

tij Esuppua(ij)a jzla"'ara

for some permutation o of {1,...,n}. Since by hypothesis {uy,...,u,} is a
locally linearly independent basis of U/, we have by Theorem 3.4, 3), that

l-dims U > r = card T.

In view of Theorem 2.2 this implies that 7" is an Al-set. W

Remark 3.5 It is possible to prove the implication 2) = 1) of Theorem 1.2
without using Theorem 2.2. We proceed by induction on s. For s = 1
the implication is evidently true. Let {u;}"_, be an LI-system, and let ¢; €
supp w;, i = 1,...,n. Suppose that Ts_y := {t;}iZ] isan Al-set w.r.t. U,_y :=
{w; i}, while T, := {t;,}5_, w.r.t. Uy := {u;}i_, is not. Then there exist
neighborhoods {B;}5_, of t,’s, and a set T!_, := {#/}:Z], with ¢\ € B, such
that
as = det{u;(t})};;1; # 0,
and
b(t,) := det{w:(t})};,_, =0, Vit! € Bs.

Setting ¢/ = ¢ and expanding the determinant b(¢) with respect to the last
column, we obtain

b(t) =Y coui(t) = > cui(t)=0, te€B,,
i<s 1<s: BsNsuppu; #0

where
Bs N supp us # 0, cs=as #0,

so that the system Uj is not linearly independent on B,, which contradicts

Theorem 3.4, 5).
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Turning back to the comparison of various definitions of local linear inde-
pendence, we note that the definitions 1) — 5) of Theorem 3.4 are in fact listed
in the order of increasing proportion of open sets B such that the subsystem

Up :={u; : BNsuppu; # 0}

has to be tested for linear independence on B. Thus, the weakest in this
sense is definition 1) or, equivalently, 2), where only small neighborhoods of
every point ¢t € K have to be considered. We now want to make one step
further and show that some undesirable points t € K can often be taken out
of consideration.

We say that a locally finite system U = {u;}icr C F(K) is linearly inde-
pendent in the neighborhood of t € K if for any neighborhood B(t) of ¢ there
exists an open set B’ such that ¢t € B’ C B(t), and Up is linearly independent
on B’. This is obviously equivalent to the condition

l-dim; U = card {i € I : t € supp u;}.

The following theorem shows that usually it is enough to check linear
independence only in the neighborhoods of points ¢t € GGy, where Gy denotes
the set of all points of continuity of local dimension ¢(t) = I-dim, U. This
is useful in applications to spline spaces, in particular, since local dimension
is much easier to count inside the cells of a partition (i.e., inside the com-
ponents of Giy) than on its edges (see, e.g., the proof of Theorem 3.11 in
[12]). We also note that the original definition of local linear independence
by de Boor and Hoéllig [4] requires linear independence of Ug only for open
B contained in some cell of the partition.

Theorem 3.6 Let U = {u;}ier C F(K) be a locally finite system of func-
tions, U = Span U. Assume that

(3.1) int (supp u;) = suppu;, 1€ 1.

If U s linearly independent in the neighborhood of every t € Gy, then U is
an LI-system.

Proof. We first note that GGy is an open and everywhere dense subset of K
by [10, Proposition 4.2]. (In fact, this is the only property of Gy we will use
in the proof.) Let us consider the locally finite system

Uu = {ui|GU}iEI C F(Gy).
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Since Gy is open,
SUPp Uy|, = Gy N supp u;, e 1.

Suppose now that ¢ fails to be locally linearly independent. Then there
exists an open set B C K such that Up is linearly dependent on B. Since
the sets int (supp u;) and Gy are open and everywhere dense in supp u; and
K, respectively, we have

{i: BNsuppu; #0} = {i: BNint(suppu,;) # 0}
= {1: BN Gy Nint(suppu;) # 0}
= {i: BNGyNsuppu; # 0}
= {i: B'Nsupp Ui # 0},
where B’ := B N Gy. Therefore, the subsystem of ',
Z/[/B, = {quU : B/ N supp ‘UZ'|GU ?é @} = {ui|GU : Bn supp u; ?é ®}7

is linearly dependent on B’, which implies, by Theorem 3.4, that ¢’ is not
an LI-system, i.e., U’ (and, therefore, ) fails to be linearly independent in
the neighborhood of some point ¢t € 7, contrary to the assumptions. W

We note that condition (3.1) holds for any system of continuous functions
u;, since in that case the set {t € K : w;(t) # 0} is open and everywhere
dense in supp u;.

In the rest of this section we will study the sectional structure of LI-
spaces. For some general results on the piecewise almost Chebyshev structure
of finite-dimensional linear spaces of real functions see [10, 11].

Suppose U = {u;}ie; C F(K) is a locally finite (not necessarily an L[-)
system, U = Span U. For any subset I' C I, let

Gp = (ﬂ int (supp uz)) ﬂ ﬂ K\ supp u;

el ie\I’

In the case I' = () we obviously have

Gp =K\ U Supp u; .

€]
(Tt may happen that Gy # (.)

18



Lemma 3.7 G is an open subset of K. Moreover, if I' is infinite, then

GI’ = @

Proof. Since {u;};cs is a locally finite system, we have
m int (suppu;) =0 if I’ is infinite.
el

Therefore, G;r can be nonempty only for a finite I'. Suppose now that I’
is finite. Let ¢t € G and let B be an open neighborhood of ¢ such that
Ig:={i € 1:BNsuppu; # 0} is finite. Then

B C ﬂ K\ suppu; .
ieN\Ip

Therefore,

B':=B ﬂ (ﬂ int (supp uz)) ﬂ ﬂ K \ supp u;

el ieIg\I’

is also an open neighborhood of t. Moreover, since (I\Ig)U(Ig\I') D (I\1'),
we have B' C Gp. 1

If Gp # (), then evidently
(3.2) GpNsuppu; # 0 ifand only if 7€ 1.
Therefore, U|G is a finite-dimensional space if I’ is finite and G # ().
I’

Definition 3.8 A finite-dimensional linear space U C F(K), dimU = n,
is said to be an almost Haar (or almost Chebyshev) space if every set T =
{t1,...,t,} C K is an almost interpolation set w.r.t. U.

Theorem 3.9 Let U = {u;}ic; C F(K) be a locally linearly independent
system, U = Span U, and let Gy denote the set of all points of continuity of
o(t) = 1-dim; U. Then

(3.3) Gv = |J Gr.
I'cr
I/ finite
K\Gy = U bd (supp u;) .
1€l

19



Moreover, for any finite I' C I, if Gp # 0, then U|G is an almost Haar
I’

space of dimension card I’, and
(3.4) l-dim; U = card I', t € Gp.
Proof. Let us note that (3.4) is a consequence of Theorem 3.4, 2), since
{iel:tesuppu;} =1, teGp.
Moreover, by Theorem 3.4, 4) and (3.2), we have
dim U|G1l = card I'.

7T = {ty,...,ts} € Gp, s = card ', then T" C supp u; for all ¢+ € ['.
Therefore, in view of Theorem 1.2, T' is an almost interpolation set w.r.t.

U|G

, which shows that U|G is an almost Haar space of dimension card I'.
1’ 1’

In order to prove the first part of the theorem, we first show that

K\ U Gp = U bd (supp u;) .

I'cit 1€l

Indeed, by the distributive law,

Ubd (suppu;) = U{SUPP u; N (K \ int (supp u;))}

iel el
— ﬂ (U supp ui) U U K\ int (supp u;)
rci el e\l
= K \ U Gp .
rcrI

It remains to prove that 1-dim; U is continuous on

and discontinuous on

U bd (supp u;) .

el
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The former follows immediately from (3.4). In order to prove the latter,
suppose that ¢ € | J;.; bd (supp u;). Let I = I; U I, U I5 such that

t € bd(suppu), 1€ I,
t € int(suppu;), 1 € 1y,
t ¢ suppu;, i€ Is.

Then, by Theorem 3.4,
l-dim; U = card I; + card I5 .
There exists a neighborhood B of ¢ such that for any € B,

r € int(suppu;), 1 € 1y,
r ¢ suppu;, i€ ls.

On the other hand, for any open B’ C B there exists a point 2’ € B’ such
that
z' ¢ suppuy, for some i’ € 1.

Then
l-dim,, U < card [y — 1 + card [, = l-dim; U — 1,

from which it follows that ¢ is a point of discontinuity of local dimension. W

Remark 3.10 It is interesting to compare (3.3) with the decomposition of
Gy into the union of its connected components (5,

(3.5) Gv =] d.,

SES

in [10, Eq. (4.9)] when U is a finite-dimensional L/-space. Both decomposi-
tions obviously coincide if every GG/ is connected. Otherwise, each G has to
be further decomposed into its connected components in order to get (3.5)
from (3.3). However, sometimes (3.3) can do the job of revealing the spline-
like structure of U much better than (3.5). Let, for example, U be the set
of cardinal B-splines restricted to a rational interval [a,b] N Q. Then (3.3)
produces usual partition of [a,b] N Q into knot intervals while (3.5) is not
very useful in this case since all G are singletons. We also mention that
(3.3) is necessarily a finite decomposition as soon as U is a finite-dimensional
LI-space.
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We finally remark that some other properties of (finite) locally linearly
independent systems, specifically minimal (or “least”) supportedness, have
been studied by Carnicer and Pena [5].
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