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Abstract. We give a characterization of Lagrange interpolation sets for
the spaces of continuous bivariate linear splines on regular triangulations.
The characterization is based on a complete description of the zero sets of
such splines.

§1. Introduction

Let K be a bounded simply connected polygonal domain in IR?, and let A =
{K;}ic1 be a regular triangulation of K, i.e.,

K = J K,

i€l

where I is a finite set, each Kj; is a closed triangle, and no vertex of K lies in
the interior of K; or in the interior of an edge of K, for all 4, j € I. Let us note
that K does not have holes (since K has a connected complement in ]R2), and
A is strongly connected, i.e., for any two triangles K;, K;, 4,j € I there exists
a sequence of triangles K; , ..., K;, such that i =41, j = 4, {i1,...,4} C I,
and K; and K;_ ., have a common edge for all o € {1,...,1 —1}.

We are interested in Lagrange interpolation by the elements of the space
S(A) of all continuous real-valued linear spline functions with respect to A.
Thus,

S(A)={se€C(K): sk, €m,ic€l}

where m; denotes the space of bivariate linear polynomials. We say that a
set T'= {t1,...,t,} C K, where n = dim S(A), is an interpolation set (I-set)
w.r.t. S(A) if for any given data yi,...,y, € IR there exists a unique function
s € S(A) such that

s(ti):yi, i=1,...,n.

While in the univariate case interpolation sets with respect to a spline
space can be characterized by the well-known Schoenberg-Whitney condition,
the multivariate situation requires further investigation (see, e.g., [1,4]). As
shown in [1, p. 136], even in the simplest case of the bivariate linear spline
space S(A) no simple extension of the Schoenberg-Whitney theorem is possi-
ble. It is well-known that interpolation from S(A) is always possible at the
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vertices v1,...,v, of the triangulation A, i.e., V = {v1,...,v,} is an I-set
w.r.t. S(A). However, the problem of determining all I-sets for S(A) does
not seem to admit a simple solution. An algorithm for constructing rather
general interpolation sets w.r.t. S(A) was proposed in [2]. A general approach
to constructing I-sets, that applies in particular to S(A), consists in first de-
termining an almost interpolation set and then transforming it into an I-set
(see [3,4,7]).

Some simple conditions on the location of interpolation and almost in-
terpolation points can be given in terms of the supports of the Courant hat
functions (see Section 2 below).

On the other hand, the problem of determining I-sets w.r.t. S(A) is
essentially equivalent to the problem of describing zero sets

Z(s):={te K :s(t) =0}

of functions s € S(A). Indeed, it follows from basic linear algebra that T' =
{t1,...,tn} C K is an I-set w.r.t. S(A) if and only if there exists no spline
s € S(A) \ {0} such that T' C Z(s).

In the main part of the paper (Section 3) we give a necessary and sufficient
condition for a set Z C K to be a zero set Z(s) of an appropriate spline
s € S(A) (Theorem 3.5). This immediately implies a characterization of all
I-sets w.r.t. S(A) (Theorem 3.6).

§2. Interpolation Sets and Supports of Courant Hat Functions

Let V = {vy,...,v,} denote the set of all vertices of the triangulation A. It
is well-known that dim S(A) = n and

S(A) =span{uy,..., U}
where the u;’s are the Courant hat functions defined uniquely by

’U,Z'(’Uj)Z(Sij, ?:,j=1,...,’n.

The support of u;, supp u; := {t € K : u;(t) # 0}, is easily seen to be the star
of the vertex v;, i.e.,

supp u; = star(v;) := U{Kj : v € K}

Moreover,
{t € K : u;(t) # 0} = intg star(v;), (2.1)

where intx M denotes the interior of M with respect to K.
A necessary condition for I-sets can be easily derived from the following
general result.
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Theorem 2.1. Let U be a linear space of real functions defined on a set K,

and let uq,...,u, be a basis for U. If T = {t1,...,t,} C K is an I-set w.r.t.
U, then there exists a permutation o of {1,...,n} such that

ua(i)(ti);ﬁo, 1=1,...,n.

Proof: The theorem is obviously true for n = 1. We proceed by induction
on n and assume that the statement has been proved for n — 1. Let

u(t) := D(uyy. .. tpn;ty,y ... ty_1,t), te K,

where we use the notation

Dttt 21, 2) = et 1s(2)
Obviously,
u(t) = crui(t) + - - + cpun(t) € U,
with .
ci = (=)D (Ut ..., g1, Uig 1y ey Unit1, e ey tp1)-

Since {t1,...,t,} is an I-set, it follows that u(t,) # 0. Hence uy(ty,) # 0 for
some £ such that ¢y # 0. Then {t1,...,t,_1} is an I-set w.r.t.

U :=span{uy, ..., U_1,U11,---,Up}-

Induction hypotheses on these basis functions and the points {t1,...,t,_1}
give the desired permutation. O

In view of (2.1) we immediately get

Corollary 2.2. If T = {t1,...,tp} C K is an I-set w.r.t. S(A), then there
exists a permutation o of {1,...,n} such that

t; € intg star(vy(;)), 1=1,...,n.

The converse of this statement is not true in general (see Example 9.2 in
[1, p. 137] as well as Example 3.6 below), which shows that the simple analogue
of the Schoenberg-Whitney condition is not valid. However, the situation is
much nicer if we switch to almost interpolation.

Definition 2.3. A set T'= {t1,...,t,} C K is called an almost interpolation
set w.r.t. S(A) if for any system of neighborhoods B; of t;, i = 1,...,n, there
exist points t; € B; such that T" = {t{,...,t},} is an I-set w.r.t. S(A).

The next result follows immediately from Theorem 1.2 in [6] in view of the
obvious fact that {uy,...,u,} is a locally linearly independent basis for S(A),
i.e., for every triangle K; the functions {u; : K, C suppu;} are linearly
independent on Kj.
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Theorem 2.4. Any set T = {t1,...,t,} C K is an almost interpolation set
w.r.t. S(A) if and only if there exists a permutation o of {1,...,n} such that

t; € star(vy(s)), 1=1,...,n.
Thus, by taking t; € intg suppu; = intg star(v;), i = 1,...,n, we “al-
most always” get an I-set T' = {t1,...,t,}. The simplest example of such an

I-set is provided by the choice t; = v;, i = 1,...,n. In fact, as shown in [7], T
is guaranteed to be an I-set if ¢;’s lie in the supports of u;’s not farther than
“half-way” from v;. (We give here this result with its short proof for the sake
of completeness.)

Theorem 2.5. [7] If
1 :
tiELi:Z{tEK:Ui(t)>§}, 1=1,...,n,

then T = {ty,...,t,} is an I-set w.r.t. S(A).

Proof: It can be easily seen that ) u;(t) = 1 for all ¢ € K. Since 0 <
i=1
u;(t) <1lforalli=1,...,nand all t € K, it follows that

n

1

0< E Uj(ti)Zl—ui(ti)<§.
j=1

i

Therefore, the matrix M := (u;(t;)); =, is diagonally dominant. Thus, M is
a regular matrix which implies that 7" is an I-set. O

§ 3. Interpolation Sets and Zero Sets

As mentioned in the introduction, T' = {t1,...,t,} C K is an I-set w.r.t. S(A)
if and only if there does not exist a nontrivial s € S(A) such that s(¢;) = 0 for
alli=1,...,n, i.e., T C Z(s). In order to characterize I-sets it is therefore
a fundamental task to study the zero sets Z(s) of the splines s € S(A). In
this section we will completely describe these sets and then be able to give a
characterization of all I-sets w.r.t. S(A).

Suppose that s € S(A). For every i € I we denote by s; € 71 the linear
polynomial (defined on IR?) that coincides with s on Kj, i.e., SilK, = S|K;-
Let I;(s) C IR? be the zero set of s,

lz(S) = Z(Si), 1€ 1.

Obviously, I;(s) is either the empty set (if s; is a nonzero constant), or a
straight line (if s; is nonconstant), or the set IR? (if s; is the zero function).
Let us denote the set of all such objects by Z, i.e.,

Z:={Z({p): p € m}.
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Thus, to every s € S(A) there corresponds a family of subsets of R?,
L(s):={li(s): 1€l}CZ.

The zero set of s is then given by
Z(s) = [JNis),
i€l
where
)\2(3) = li(s)ﬂKi, 1€ 1.
We are now interested in the following

Question. Let an arbitrary family
L:={l;i}ierCZ
be given. What are the necessary and sufficient conditions on L that ensure

the existence of a spline s € S(A) such that L = L(s)?

First, it follows immediately from the continuity of s € S(A) that £ =
L(s) necessarily satisfies the following two conditions.

Condition A. For any 4,5 € I, if the triangles K; and K; have a common
edge e, then
li N l(e) = lj N l(e),

where [(e) denotes the straight line containing e.

Condition B. For any ¢,j € I, if the triangles K; and K; have a common
vertex v, then

li N {’U} = lj N {’U}

Indeed, if, for example, K;NK; = e and [;(s)Nl(e) = {2z}, then necessarily
l;(s)Ni(e) = {z} since s; and s; coincide on [(e). See also Fig. 3.1.

I(e) \

Fig. 3.1. Conditions A and B.
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Fig. 3.2. A and B are not sufficient.

Unfortunately, Conditions A and B are not sufficient for £ to admit a
spline s € S(A) with £ = L(s). For example, it is not difficult to see that for
the triangulation A = {Ky, Ko, K3, K4} and set £ = {l1,12,l3,14} C Z shown
in Fig. 3.2 there exists no spline s € S(A) such that £ = L(s) despite the fact
that Conditions A and B are satisfied. (In fact l;(s) = l;, ¢ = 1,2, 3, implies
l4($) = lg 7A l4)

Thus, an additional condition on £ has to be imposed. In order to for-
mulate it in full generality, we need some preparation.

Definition 3.1. Let M be a nonempty connected subset of K. The shell of
M, denoted by shell(M), is the intersection of all simply connected subsets of
K containing the set
i€l
K;NM#D

It is easy to see that K is necessarily connected and shell(M) is just the
union of Kjs and all its holes. Therefore, the boundary of shell(M) is a closed
polygonal line without loops. For any vertex v; of A, shell({v;}) = star(v;).

We now associate with £ a set L* C K defined by

L* ::U)\;,

i€l

where A} denotes the convex hull of I; N K; N {v1,...,v,}. Thus, each A} is
either K; if ; = R?, or an edge e of K; if [; N K; = e, or {v;}, where v; is a
vertex of K;, if [; N K; = {v;}, or () if no vertex of K; lies on /;. We note that
if £ = L(s) for some s € S(A), then L* C Z(s).

Definition 3.2. Let L',..., L" be connected components of L*, such that
L*=L'U---UL". For every j = 1,...,r, the boundary of shell(L’) is called
a cycle w.r.t. £ if LY C intshell(L7).

It is easily seen that the boundary of shell(L?) is a cycle if and only if
L7 C int K. See Fig. 3.3 for a typical zero set of a spline s € S(A) along with
the corresponding set L* and the (only) cycle w.r.t. L(s).
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7 o

Fig. 3.3. Zero set (to the left), L* and a cycle (to the right).

We are now ready to determine the third condition that necessarily holds
for L if L = L(s), with some s € S(A).

Let o be a cycle w.r.t. £. Then o is the boundary of shell(L?) for some
connected component L7 of L*, and, hence, ¢ is a closed polygonal line without
loops. Let us denote its vertices by v1,...,v,, in counterclockwise order. Set
Um+1 = v1. By the definition of a cycle, v; € L7, i = 1,...,m, but for every i
there exists a triangle K, € A such that K,, = con(v;, v;y1,w;) (the convex
hull of vertices v;, v;11,w;) and w; € L7. It follows that l,; contains w;, and
Ly N {vi,viga} = 0. (If, for example, v; € ,;, then the edge e with vertices
v; and w; would be a subset of [,,,, and hence e C A7, which would imply
e C L7.) Particularly, 1, is a straight line. Furthermore, denote by (v;, vi11)
the straight line that contains v; and v;41. Let

I:={ie{1,...,m}: l,, and I(v;, v;41) are not parallel}.

For all i € T we denote by z; the intersection point of I, and I(v;, v;41) (see
Fig. 3.4). By the above arguments, z; & {v;,vit1}, 1 =1,...,m.

Vi1

Iy,

1, Visn)

Fig. 3.4. Intersection of [,,, and I(v;, viy1)-

To simplify our arguments, we make the following definition.
Definition 3.3. A cycle o w.r.t. £ is called singular if
[[ellnm) g, (3.1)
A p('Ui,Zi)
1€l

where

eo= 4L if z; € con(v;, viy1),
¢ 1, otherwise ,

and p(z,w) denotes the usual Euclidian distance between two points in the
plane.

Our third condition reads as follows.



8 0. Davydov, M. Sommer, H. Strauss

Condition C. Every cycle w.r.t. £ is singular.

If now £ = L(s) for some s € S(A), then s(v;) # 0, ¢ = 1,...,m
Consider, as before, the linear polynomials s,, that coincide with s on K,
¢t =1,...,m. If ¢ € I, then s, restricted to I(v;,v;+1) is a linear function

vanishing at z;. If, otherwise, i ¢ I, then the zero line l,, of s,, is parallel to
(v, vi41), and, hence, s, is constant on /(v;, v;4+1). Therefore,

s(vig1) _ Sp; (Vig1) _ {si%, ifiel,
s(vq) S (Vi)

1, otherwise.
Since vy, +1 = v1, we have

m
H S(Uz-l-l P UZ-I—la Z'L
8 A p(vz,zz) ’

=1
and Condition C holds.
We are now in position to answer the above Question.

Theorem 3.4. Given L = {l;}ic1 C Z, there exists a spline s € S(A)
such that £ = L(s) if and only if Conditions A, B and C hold. Moreover,
if Conditions A, B and C are satisfied, then the dimension of the subspace
of splines s € S(A) such that l; C Z(s;), i € I, is equal to the number of
connected components of K \ L*.

The necessity of Conditions A, B and C has been shown above. Sufficiency
as well as the second statement of the theorem will be proved in the next
section.

As immediate consequences of the first statement of Theorem 3.4 we now

give a characterization of zero sets of splines s € S(A) and a characterization
of I-sets w.r.t. S(A).

Theorem 3.5. A set Z C K is a zero set of a spline s € S(A) if and only if
there exists L = {l;};er C Z such that Conditions A, B and C are satisfied
and ZNK;=1;NK; for all i € I.
Proof: If s € S(A), then Z(s) = U;¢;(li N K;), with {l;}ier = L(s). Con-
versely, if £ = {l;};er C Z satisfies Conditions A, B and C, then by Theo-
rem 3.4 there exists s € S(A) such that £ = L(s). If now ZNK; =1; N K;,
i €1, then 7 =J;.;(l; N K;) = Z(s). O
Theorem 3.6. Let T = {t1,...,t,} C K. Then T is an I-set w.r.t. S(A) if
and only if there does not exist L = {l;}ic; C Z such that

1) I; # IR? for at least one i € I,

2) TNK; Cl; foralli€ I, and

3) L satisfies Conditions A, B and C.

Proof: The result follows from Theorem 3.5 since T is an I-set w.r.t. S(A)
if and only if there exists no spline s € S(A) \ {0} such that T C Z(s). O

To illustrate Theorems 3.5 and 3.6, we consider the following examples.
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Example 3.7. Let A consist of two triangles K7, K5 with a common edge
e. Then dim S(A) = 4. According to Theorem 3.5, Z C K := K; UK, is a
zero set of a spline s € S(A) if and only if Z = (I, N K1) U (Ia N K3), where
L ={l1,l2} C Z satisfies Conditions A, B and C. It follows that there are the
following possibilities:

) I1=01,b=R* Z=K,s=0,

2) l1 = IRQ, lz = l(e), Z = Kl, or lg = IR2, ll = l(e), Z = Kg,

3) both l; and [l are straight lines that either intersect at a point on I(e),
or are parallel to each other and to I(e), and, consequently, Z is either an
interval or the union of two intervals or the empty set,

4) Iy =0, l5 is a straight line parallel to I(e), Z =1y N K, or Iy =0, 11 is a
straight line parallel to I(e), Z =11 N K1,

5) Iy =1y =0, Z =0, s is a nonzero constant.

We now describe the I-sets T = {t1,ta,t3,t4} C K w.r.t. S(A). By Corol-
lary 2.2 not more than three points t; lie in the same triangle K; or K,.
Therefore, we distinguish two cases.

a) Suppose that exactly three points ¢; lie in the same triangle, i.e., say,
t1,t2,t3 € Ky and t4 € intg Ko. Then it is easy to see by Theorem 3.6
and the above description of zero sets that 7" is an I-set if and only if the
points tq,ts,t3 are not collinear.

b) Suppose that t1,t2 € intg K7 and t3,t4 € intg Ko. Then T is an I-set if
and only if [(¢1,t2) Ni(e) # l(t3,ts) N1(e). (See Fig. 3.5.)

Fig. 3.5. Typical I-sets in Example 3.7.

We note that Condition C does not apply to Example 3.7.

Example 3.8. Let K be the square [—1,1]?, and let A be defined by drawing
in the two diagonals. Then dim S(A) = 5. Consider

T = {(0,0), (%,0), (_%70)7 (07 %)7 (0’ _%)}7

see Fig. 3.6. It is easy to see that conditions 1)-3) of Theorem 3.6 are satisfied
for £ = {l1,l2,13,14}, where [y =13 ={(0,y) : y € R} and I3 =14 = {(z,0) :
z € R}. Particularly, Condition C holds for £ since L* = {(0,0)}, the
only cycle w.r.t. £ is formed by the boundary of K, with vertices vy = (1,1),
vy = (—1,1),v3 = (—1,—1) and v4 = (1, —1), and since the intersection points
z1=(0,1), 22 = (—1,0), 23 = (0,—1) and z4 = (1, 0) satisfy (3.1). Therefore,
by Theorem 3.6, T is not an I-set w.r.t. S(A). However, if we move a point in
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T from the corresponding line /;, then we get an I-set. Consider, for example,

the set
T = {(0,0), (%78)7 <_%70)7 (0, %)’ (0, _%)}

with some 0 < || < 1. Then the only £’ satisfying 1) and 2) of Theorem 3.6 as
well as Conditions A and B is £ = {l,ls,13,1}}, where I, is the line y = 2ez.
Since £’ does not satisfy Condition C, it follows that 7" is an I-set.

:|1:|3

Fig. 3.6. Non-I-set T and I-set T".

§ 4. Proof of Theorem 3.4

The necessity of Conditions A, B and C has been shown in Section 3. In order
to prove sufficiency, let us assume that £ = {l;};c; C Z satisfies Conditions
A, B and C. We now construct a function s € S(A) such that £ = L(s), i.e.,

li =2Z(s;) forall iel. (4.1)

The proof is rather lengthy and we divide it into several parts.

(I) Corresponding to the family £ let us consider L* C K defined in Section
3. If L* = K, then I; = IR? for all i € I, and the spline s = 0 has the desired
properties. Therefore, we assume that K \ L* # (). Let

K\L*=KWMuy.. .uKld

where KUl are the connected components of K \L*,j=1,...,q. Then

seIJ]
for some subsets Il of I such that I; # R? for all i € T [j]..
For every j € {1,...,q} we will construct a function sb! € S(A) satisfying

S[j]|KiEO for all iQ'I[J'],

: . (4.2)
Z(sU) =1; forall ie Il
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where sEj ! denotes a linear polynomial such that s

spline

(5]

o s[j]|Ki. Then every

q
s:Zajsm, with a; #0, j=1,...,q,
=1

satisfies (4.1).

To describe the construction of s it is therefore only necessary to consider
a single set KU1, For simplicity of notation, we write K , I , § and §; instead
of KUl 111 slil and sV, respectively.

i
(IT) We want to construct 3 step by step, passing from one triangle to another.
To this end the triangles K;, ¢ € I, have to be appropriately ordered. The
order that we need is described in the following lemma. (Recall that H C IR?

is called a hole of a connected set M c R? if H is a bounded connected
component of R?\ M.)

Lemma 4.1. There exists a sequence of subsets

K" := UKi \L*CK, y=1,...,p,
i€l

where Iy C ... C I, = I and card I, = vy, such that for ally =1,...,p,

1) K7 is strongly connected, and
2) every hole H of clos K7 (the closure of K7) is also a hole of clos K.

Proof: We set I; = {i;} for some i; € I. The set K! = K;, \ L* obviously
satisfies 1) and 2).

We proceed by induction and assume that for some v < p — 1 the set K7
satisfying 1) and 2) has been constructed. We now have to determine some
iy41 € I\ I, such that

K™ = K"U (K, ,, \ L%

also satisfies 1) and 2).

Observe first that there exists some v € T\ I, such that K, \ L* has a
common edge with K7 since otherwise K7 would be a connected component
of K \ L* contradicting the assumption that v < p—1. If now K7 U (K, \ L*)
satisfies 2), then we set i,41 := v and are finished.

Suppose that 2) fails. Then there exists a hole H of clos(K”UK,,) which is
not a hole of clos K, i.e., there is at least one triangle K;, 1 € I, lying in clos H.
Moreover, by induction hypothesis, H is not a hole of clos K. (In particular,
K, has a common edge with clos H.) Since K is strongly connected, it follows
that there exists v € I \ I, such that K,, C closH and K,, has a common
edge with K7.
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If K7U (K,, \ L*) satisfies 2), then we set i,41 := v; and are finished.
Otherwise, there must exist a hole H; of clos(K7 U K,,) which is not a hole
of K, and

H,C H, H, #H.

Then we find vy € I \ I, such that K,, C clos H,; and has a common edge
with K7.
By a repeated application of these arguments we obtain a sequence of
indices v; and holes H; satisfying
Hiy1 C H;, Hiy1 # H;.

Since the number of triangles in A is finite, this process must stop after a
finite number of steps, which guarantees the existence of some v, € I'\ I, such
that K71 := K7 U (K, \ L*) satisfies 1) and 2), and the proof is complete.
O

(ITI) We are now ready to proceed to the construction of §;, i € I. Obviously,
=0 forall i¢gl.

Thus, we have to determine §; for i € I. Recall that
l; #R? forall iel.

Using the sequences (K )5 —; and (I,)5_; constructed in Lemma 4.1, we as-
sume without loss of generality that

I, ={1,...,~}, y=1,...,p.

We first determine 51. If [; = ), then we set

If I, is a straight line, then we choose a point ¢ € K7 \ /1 and define §; as a
unique linear function such that

51(?5 =1, §1(t) =0 forall tely.

Assume that for some v < p — 1 the linear polynomials 54,...,5, have
been appropriately chosen such that

Z(8;)=1; forall i=1,...,7,
and the piecewise linear function

§7(t) := 3;(t), for te K, i=1,...,7,
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is continuous on clos K7 = U, Ki. It is easy to see that

§7(t)=0 forall teL*NclosK".

We now want to determine 3,41 € m; such that Z(5,41) = ly41 and 5,41
continuously extends 57 to K,;1. We will see that such a linear polynomial
always exists and is furthermore unique. Since K7*!' = K7 U (K., \ L*)
is strongly connected (by Lemma 4.1), K7 and K.,,; \ L* have at least one
common edge. (Here we do not count the edges that lie in L*.) Moreover, K"
and K.,4q \ L* cannot have three edges in common, for otherwise int Ky
would be a hole of clos K7 and consequently, by Lemma 4.1, a hole of clos K,
in contradiction with the fact that int K41 C K+l ¢ K Thus, K and

K. 11\ L* always have either one or two common edges. We distinguish these
two cases.

Case 1: K7 and K41\ L* have exactly one common edge e.

Since e ¢ L*, we have e \ l,4+1 # 0. Let us choose a point ¢y € e\ l,+1. We
define 5, to be a unique linear polynomial such that

Z(8y41) = lyp1 and  5y44(to) = 87 (fo).-

We have to show that the extended piecewise linear function

7L = §7(t), ift € clos K7, s
§7TN(t) {§7+1(t), ift € Kyq1 (4.3)

is continuous on clos K71 = clos KUK ~+1- Since 87 is continuous on clos K7
by induction hypotheses, we only have to ensure the continuity of 57! across
the edges and vertices of K41 that lie in clos K7. Let K. 4+1 = con(vq, va, v3)
and e = con(vy,v2). The continuity of 5771 across the edge e easily follows
from Condition A. It may happen that one of the other two edges of K1,
say € := con(vy,vs), lies in clos K7. Then necessarily ¢/ C L*, and hence,
by Condition A, ¢’ C l,41. Therefore, 57(t) = 5,41(t) = 0 for all ¢t € ¢,
which guarantees the continuity across e’. It remains to prove that 57t is
continuous at v if v3 € clos K7. This follows from the above arguments if
at least one of the edges e = con(vl, v3) or e’ = con(vz,v3) lies in clos K.
If, otherwise, none of e’ and €” lies in clos K7, then clos K7*! must have a
hole H whose boundary includes one of these edges say €. (See Fig. 4.1.)
By Lemma 4.1 H is also a hole of clos K. Since K is a connected component
of K \ L*, and K is simply connected, it follows that the boundary of H lies
in L*. In particular, v3 € L*. Condition B then implies that v3 € I, and
§7(v3) = $y41(v3) =0, so that §7! is continuous at vs.

Case 2: K7 and K. 4+1\ L* have two common edges e; and es.

Let e; = con(v,v;), ¢ = 1,2. Assume first that v ¢ L*. Then we define 5,41
as a unique linear polynomial such that

Z(Sy+1) =lyy1 and  Sy41(v) = 57(v).
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Fig. 4.1. Hole H in Case 1.

The continuity of §7** given by (4.3) on clos K7t! can be checked in the same
way as in Case 1.
Assume now that v € L*. Since ey,e; ¢ L*, we have

K, i1nL* = {v}.
Define 5,41 as a unique linear polynomial such that
(@) =0, Gpa() = (w), =12 (4.4)

Since 57(v) = 0, it is obvious that the piecewise polynomial function srtt
given by (4.3) is continuous on clos K7*. Thus, it remains to show that

Z(Sy41) = ly41. (4.5)

To this end we denote by L the connected component of L* that contains
v. Let, furthermore, sm(L) be the union of L and all its holes. (Thus, sm(L)
is the intersection of all simply connected subsets of K containing L.)

Lemma 4.2. sm(L) is a hole of KYt1. Moreover,
shell(L) \ sm(L) ¢ K7+, (4.6)

Proof: We first note that (4.6) follows immediately from the first statement
of the lemma in view of the fact that the boundary of shell(L) cannot contain
points of L*. ~

Denote by K, and K, the triangles in K7 that are attached to e; and
ey respectively. Since K7 is strongly connected, there exists a sequence of

triangles
Kp:KilaKi2a"'aKir:an with 7:3‘617, j=1,...,r

such that K;, and K;, , have a common edge lying in KYforallj=1,...,r—

ti+1
1. We set .
K = U KZJ

=1
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Fig. 4.3. L must lie in a hole of (K U K1) \ L*.

Assume for a moment that int K44 lies in a hole H of K (see Fig. 4.2). Since
K\L* C K" and K1\ L* C K\ K?, we can then find a hole H' of clos K7,
such that int K.,11 C H' C H. Then H' is not a hole of clos K, contrary to
Lemma 4.1.

Therefore, int K., 1 cannot lie in a hole of K. Consequently, Kyi1\ L*

cannot lie in a hole of L. Moreover, it follows that L must lie in a hole H of
(KUK,41)\ L* (see Fig. 4.3). Then sm(L) C H. Since

(KUK, )\ L* c K" and sm(L)nK"*! =09,

there exists a hole H' of K7*1 such that sm(L) C H' C H. The proof will be
completed if we show that
sm(L) = H'.

Recall that K7*! has the form U \ L*, where U is the union of certain closed
triangles in A. If int B’ = 0, then H’ is easily seen to be a connected com-
ponent of L*. Since L c H' is a connected component of L*, it follows
that sm(L) = L = H’ as desired. Now suppose that int A’ # (). Then
H'\ clos(int H') ¢ L*. Moreover, int H' is a hole of clos K71, Hence, by
Lemma 4.1, int H' is also a hole of closAf{ . Since K is a connected component
of K\ L*, we have clos(int H') C sm(L). The desired conclusion now follows
from the fact that H’ is connected. [

We now continue the proof of (4.5). It follows from Lemma 4.2 that the
boundary of shell(L) is a cycle o w.r.t. £. Then o is a closed polygonal line
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without loops. Let vy, ..., v,, denote the vertices of o, with v; and vy being
the vertices of K, 1 as above. Furthermore, let K, denote the triangle with
vertices vj, vj11 and wj, j = 1,...,m (we set vy, 41 := v1) such that w; € L.
Then

Kl/l = v+1,

m
U K., | \ L Cshell(L) \ sm(L).
7=1
By (4.6) it follows that <U;n=1 K,,J.) \ L ¢ K"*'. Moreover, since K71 =
K7 U (K11 \ L*), we have
K,,J.\IA)CK"Y, j=2,...,m.

As in Section 3, let us denote by z; the unique intersection point of /,,
and l(vj,vj4+1), J € I, where

I={je{1,...,m}: l,, and I(vj,vj11) are not parallel}.

Since §7 has been properly defined on clos K7, it follows that

7 (vy) = " (vj11),  forall je{2,...,m}\I,
a1, . . T
3~ (UJ_H) —e; p(vﬂ‘i‘l’ ZJ)’ forall je€ I\ {1}7
5111 (vy) p(vj, z;)

where
o —1, if z; € con(vj,vj41),
771 1, otherwise.
By Condition C the cycle ¢ is singular, i.e.,

ngip(zﬂ,zi) =1,
o
jer PV

and, since v,,4+1 = v1, we obtain

Sy1(v1) _ 3 (vmga) ﬁ §7  (vj41) _ 11 P(vj+1, 25)

S vg)  §7H(v s7+H1(w; T p(vs, 2
() (v2) ) 4k S o)
(vi,21) - 7
_ 81%, if 1€ {,
1, if1&1.

Since 5,41 is a linear polynomial that vanishes at v (see (4.4)), (4.5) follows.
This completes the proof of the first statement of Theorem 3.4.
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We now turn to the proof of the second statement of the theorem. It is
obvious that

Se:={se€S(A): l; C Z(s;) for all i € I},

is a linear subspace of S(A). (Here, as usual, s; denotes the linear polynomial
coinciding with s|x, on K;.) Recall that

K\L*=KMy.. ukld

where KUl j = 1,... ¢, are the connected components of K \ L*. Above
we constructed the functions sUl € S(A), j =1,..., ¢, satisfying (4.2). Since
these functions are obviously linearly independent and belong to S, we have

dim S; > gq.

In order to show the opposite inequality, we consider an arbitrary spline s €
Sc. Observe that it can easily be seen from the construction in (III) that each
sUl is uniquely determined by (4.2) up to a constant factor. Therefore,

8|K[j] Ecjs[j]|K[j]a jzlu"'aqu
for some ¢; € IR. This implies that

q

— old

§= E cjs[],
j=1

i.e., st ... sld form a basis for S, and the proof is complete.
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