Locally Linearly Independent Basis for
C! Bivariate Splines of Degree ¢ > 5

Oleg Davydov

Abstract. We construct a locally linearly independent basis for the

space S,} (A) (¢ > 5). Bases with this property were available only for
some subspaces of smooth bivariate splines.

§1. Introduction

Let © ¢ R? be a simply connected polygonal domain, and let A denote a
triangulation of 2 consisting of N triangles, V vertices and E edges. Given
0 < r < ¢, consider the linear space of bivariate polynomial splines of degree
g and smoothness r,

Sg(A):={s€C"(Q): 5, €Il for all triangles T' € A},

where
I, :==span{a'y’ : 1 20,7 >0, 14+j<q}

is the space of bivariate polynomials of total degree ¢. To simplify notation,
we set

1 2
dy :=dimlIl, = %,

qg=0,1,....
The question of identifying the dimension of S;(A) was first considered
by Strang [14]. Morgan & Scott [11] showed that

dim S, (A) = dyN — (dg — dg—2)Er+ diVi + 0, ¢q>5, (1)

where V7 and Ej denote the number of interior vertices and interior edges
respectively, and o is the number of singular vertices of A, i.e., those interior
vertices for which the adjacent edges of each attached edge are collinear, so
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that exactly four triangles share a singular vertex and their union is a quadri-
lateral with the diagonals drawn in.

Moreover, in [11] a nodal basis for S;(A) (¢ > 5) was constructed. This
means that the functions in S; (A) were determined by their values and deriva-
tives at points in  (nodal values). An important feature of the Morgan-Scott
basis is that each basis function is supported at most in the star of a vertex,
i.e., the union of all triangles sharing the vertex.

For many further results on the dimension and bases for the spaces S;’(A)
and their superspline subspaces, see [1-5,9,10,12,13,15] and references therein.

As it has been shown recently [7], the property of local linear indepen-
dence of a system of functions plays an important role in the problems of
multivariate spline interpolation. Because of this, the question of existence of
locally linearly independent systems of spline-functions was considered in [8].
Particularly, it was proved in [8, Section 3.5] that for any p > 2r and ¢ > 2p+1,
the space of supersplines

SyP(A) :i={s€ S/(A): s€C’(v) for all vertices v € A}

admits a locally linearly independent basis. However, the Morgan-Scott basis
for 53 (A) is easily seen not to be locally linearly independent (see Remark 11).

The aim of this paper is to provide a locally linearly independent basis for
Si(A), ¢ > 5 (see Theorem 8). We note that our construction in fact differs
from that of [11] only in the choice of second order derivatives at the vertices.

§2. Locally Linearly Independent Systems

Let K be a topological space, and let F(K) denote the linear space of all real
functions on K. We set

suppf:={t€ K: f(t) #0}, fe€F(K).

Definition 1. A system {uy,...,u,} C F(K)\{0} is said to be locally linearly
independent if for any ¢ € K and any neighborhood B(t) of ¢ there exists an
open set B’ such that t € B’ C B(t) and the subsystem

{ui+ B'Nsuppu; # 0}

is linearly independent on B’.

For some other possible definitions of locally linearly independent systems
of functions as well as their examples, see [7,8]. This notion turned out to be
particularly important for the theory of almost interpolation.

Definition 2. Let U C F(K) be a finite-dimensional linear space, dim U = n.
Aset T ={t1,...,t,} C K, is called an almost interpolation set with respect to
U if for any system of neighborhoods B; of ¢;, 1 = 1,...,n, there exist points
ti € B; such that T' = {¢{,...,t}} is admissible for Lagrange interpolation
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from U, i.e., for any given data {y;,...,yn} there exists a unique function
u € U satisfying
u(t) =vyi, i=1,...,n.

2

Theorem 3. [7] Let {uy,...,u,} C F(K) be a locally linearly independent
system and U = span {uy,...,u,}. Aset T = {ty,...,t,} C K, is an almost
interpolation set w.r.t. U if and only if there exists some permutation o of

{1,...,n} such that
t; € SUPPU(y, t=1,...,n.

Another useful feature of a locally linearly independent system is that it
forms a least supported basis for its span.

Theorem 4. [6] A system {uy,...,un,} C F(K)\ {0} is locally linearly
independent if and only if {uy,...,u,} is a least supported basis for U =
spand{uy,...,u,}, i.e., for every basis {vy,...,v,} of U there exists a permu-
tation o of {1,...,n} such that

suppu; C suppvg(;), ¢ =1,...,n.

The following characterization of local linear independence of a system of
splines in Sy (A) is an immediate consequence of [7, Theorem 3.5].

Theorem 5. Let {s1,...,s,} C S;(A)\{0} andIl, C S :=span{si,...,sn}.
Then {s1,...,sn} is locally linearly independent if and only if

card{s : T C supp s[i]} =d,, for every triangle T € A. (2)

Proof: It follows from [7, Theorems 3.5 and 3.4, 2)] that a basis for S is
locally linearly independent if and only if the local dimension of S at any
point ¢ in the interior of an arbitrary triangle 7' € A equals the number of
basis functions which are supported on a neighborhood of ¢. Since II, C S,
it is easy to see that the local dimension at such a point is always d, and
that every spline s € S which is supported on a neighborhood of ¢, is also
supported on the whole triangle T, so that card {i : T C supp st} equals the
number of basis functions supported on a neighborhood of ¢. O

§3. A Basis for S (A) (¢ > 5)

Following the notation introduced in [11], we consider “edge derivatives” of
splines s € S;(A). Let v be a vertex in A, let e, ez be two consecutive edges
attached to v, and let T be the triangle with vertex v and edges e;,e;. By
the first and, respectively, second ¢;-derivative of s at v we mean

0s *(3,) .
Se; (V) := 87’<(U) and  s.2(v) = 87’|2T (v), i=1,2,

2
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where r; is the unit vector in the ¢; direction away from v. Furthermore, by
the cross (e, ey)-derivative of s at v we mean

(5,.)

Seqpen(V) 1= B0 v).

For every edge e € A we choose one (of two possible) unit vectors orthogonal
to e and denote it by r+. Then the edge normal derivative of s at any point

z € e 1s defined by
0s
Sel (Z) = ar—J—(z)

Let €', e, €’ be three consecutive edges attached to a vertex v. Denote
by 6 and 6" the angles between e and ¢’ and between e and e respectively.
Then the second e-derivative and the cross derivatives of s at v stay in the
following relation

sin(f' 4 6")s.2(v) = sin 6" scer (v) + sin @' scer (v). (3)

(See equation (III) in [11].) Particularly, if e is degenerate at v, i.e., ' +60" = 7,
then we have
sin @ scer(v) = —sin@'seen (v). (4)

For every vertex v € A, let T!,...,T™ be all triangles attached to v
and numbered in counterclockwise order (starting from a boundary triangle
if v is a boundary vertex). Denote by ¢; the common edge of T¢~! and T,
1 =2,...,n,. If visan interior vertex, e; = e, 41 denote the common edge
of T} and Tv. Otherwise, e; and €,,4+1 are the boundary edges (attached
to v) of T and T™ respectively. We now consider the following set of nodal
values:

1) for each vertex v € A, the nodal values s(v), s;(v), and s,(v),

2) for each edge e € A, the nodal values s(221),... s(z047%),

where {201,...,29475} is a set of distinct points in the interior of e,

3) for each edge e € A, the nodal values s . (z}'),... s, (2147*), where
{z1t ., 21474 i5 a set of distinct points in the interior of e,

4) for each triangle T € A, the nodal values s(z%«),...,s(z%q_a), where
{4, ... ,z;q_a} C int T is a set of points admissible for Lagrange inter-

polation from II,_s,

5) for each vertex v € A, the nodal values s, ,(v) for all i € {1,...,n,}
such that e; is nondegenerate at v,

6) for each vertex v € A, the nodal values s.2(v) for all ¢ such that e; is
degenerate at v,

7) for each boundary vertex v € A, the nodal values s.2(v) and sz +1(v),

8) for each singular vertex v € A, the nodal value s, .,(v).
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While our sets of nodal values of type 1-4 are the same as those of the
paper [11], the remaining nodal values are chosen differently. However, it is
easy to see that the number of nodal values in 5)-8) is n, if v is a nonsingular
interior vertex, n, + 1 if v is a singular vertex, and n, + 2 if v is a boundary
vertex, which equals the number of nodal values of type 5 and 6 in [11].
Therefore, a calculation in [11] shows that the total number of nodal values
listed in 1)-8) is equal to the dimension of S;(A).

Lemma 6. Suppose that s € S;(A) has all nodal values in 1)-8) equal to
zero. Then s = 0.

Proof: Following the argumentation in [11], we only need to show that for
each vertex v € A,

5.2(0)=0, 1=1,...,ny+1, and See;p,(v) =0, 1=1,...,n,.

Let us first consider cross derivatives. Since the nodal values of type 5
are zero, we have s¢,c;,, (v) = 0 for all 2 such that e; is nondegenerate at v. If
e; is degenerate at v, then it follows from (4) that

1 1

eieifl (v) = _msei_wi (v),
i

—s

sin 6;
where 6; denotes the angle between e; and e;41. If now €;_; is nondegenerate
at v, then s¢,_,¢;(v) = 0 and hence s¢,e,,, = 0. If both ¢; and ¢;_; are
degenerate at v, but e;_2 1s nondegenerate, then

1 1 1
—Q——S¢:e: V) = ——F——S¢.: NV) = —/—Se.: . v) = 0
Sil’lei €z€z+1( ) Sinei_l ez—lez( ) Sil’lei_z ez—2€t—l( ) )
hence s¢;¢;,, = 0. Finally, if at least three edges are degenerate at v, then v

is necessarily a singular vertex, n, = 4 and all four edges ey, €3, €3 and e4 are
degenerate at v. Then

1 1 1 1

6162(’0) = - 6263(‘0) = 6364(’0) = - eseq (U)

sin 64 s sin 69 s sin 63 s sin 64 s
Since the nodal value of type 8 is zero, we deduce from the last equation that
all four cross derivatives at v are zero.

It remains to show that all second e;-derivatives are also zero at v. Since
the nodal values of type 6 and 7 are zero, we only consider those ¢ for which
e; lies in the interior of  and is nondegenerate at v. Then sin(6; +6,-1) # 0,

so that by (3),

sin 6; sin ;4
S 2|1

e (v) = mseiei+l(v) + mseiei_l(v)-

We have already proved that s.,.
0. O

(v) = Se;e;_, (v) = 0. Therefore, s.2(v) =

i+1
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Let us number the nodal values 1,..., D, where
D :=dim S, (A) = d,N — (dg — dg—2)Er + di Vi + 0.

Then, in view of Lemma 6, it follows from basic linear algebra that for each
j € {1,...,D} there exists a unique spline s/ € S;(A) which has the j-th
nodal value equal to 1 and all the other nodal values zero. Moreover, it is
clear that {sl'],... slP1} is a basis for S;(A). We say that a basis function

sl is of type 1-7 or 8 if the j-th nodal value is of the corresponding type.
We now describe the supports of the basis functions slil.

Lemma 7.

1) The support of a basis function sl of type 1 is the star of the vertex v.

2) The support of a basis function sl of type 2 is the union of the two
triangles sharing the edge e.

3) The support of a basis function st of type 3 is the union of the two
triangles sharing the edge e.

4) The support of a basis function sl of type 4 is the triangle T.

5) The support of a basis function sl of type 5 is either the union of the
triangles Ti=', T! and Ti*' if the edge e,y is nondegenerate at v, or
the union of the triangles T!=', Ti, T!t' and Ti*? if the edge e;1, is
degenerate at v, but e;1, is nondegenerate at v, or the union of the
triangles T'=1, T!, Ti+1, T*2 and Ti+3 if the edges e;y1 and e;1, both
are degenerate at v, but e;3 is nondegenerate at v. (If v is a boundary
vertex, then the triangles with a superscript not in {1,...,n,} should be
omitted.)

6) The support of a basis function sl of type 6 is the union of the two
triangles sharing the edge e;.

7) The support of a basis function sl of type 7 is one of the triangles T! or
Tnv.

8) The support of a basis function sl of type 8 is the star of the vertex v.

Proof: The statements 1)-4) are obvious. In order to prove 5)-8), we argue
in the same way as in the proof of Lemma 6, except that one of the nodal
values of s € Sql(A) is 1 while the others are zero. Suppose, for example, that

sl is of type 5 and the corresponding nodal value is Se,e,q1(v), with both e,
ent:(v) = 1 and all the other nodal

values of sl are zero. The same calculation as in the proof of Lemma 6 shows
that

and e,y nondegenerate at v. Then 5[6]3

Si]é]('v):(), i:l,...,nv-l—l, L¢{M7M-|-]_}7

S[e]i]ei+1(v) = 0? 1= ]-7 sy Ny, U ?é 22

and
17 sin 0, 17 sin
2\V) = — 0, 2 . 07
Seu( ) sin(6, +6,-1) 7 8%+1 v sin(6, + 6,41)
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from which it follows that supp sl = TF=YuTrUTH O

As soon as Lemma 7 is established, it is easy to check that the basis
{s11, .. sIP1Y satisfies (2), so that the following theorem is valid.

Theorem 8. The above-constructed basis {s!'],... sIPl} for Sy(A) (¢>5)
is locally linearly independent.

In view of Theorems 3 and 4, the next two statements immediately follow
from Theorem 8.

Corollary 9. Let {tl!l ... #IP1} € Q be a set of distinct points such that
bl e supp s[j], 73 =1,...,D, where supp sUl are described in Lemma 7. Then
{1, ... ¢IP1} is an almost interpolation set with respect to S, (A).

Corollary 10. {s!', ... sP1} is a least supported basis for Si(A).

Remark 11. The original scheme by Morgan and Scott makes use of one
cross derivative and all except one edge derivatives at each nonsingular interior
vertex v. Let us denote the exceptional edge by e. It is not difficult to see
that all basis functions corresponding to second order derivatives at v are
supported on both triangles 7' and T" sharing e. Hence, there are at least
d,+n,—3 basis functions supported on T’, where n, is the number of triangles
attached to v. By Theorem 5 it then follows that the Morgan-Scott basis fails
to be locally linearly independent as soon as there exists a nonsingular interior
vertex v with n, > 3.
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