Stable Local Bases for Multivariate Spline Spaces

Oleg Davydov

Abstract. We present an algorithm for constructing stable local bases for the
spaces Sj(A) of multivariate polynomial splines of smoothness 7 > 1 and degree

d > r2™ + 1 on an arbitrary triangulation A of a bounded polyhedral domain
QCR", n>2.

§1. Introduction

Let A be a triangulation of a bounded polyhedral domain €2 C IR", i.e., A is a finite
set of non-degenerate n-simplices such that

1) Q= UTeA T;
2) the interiors of the simplices in A are pairwise disjoint; and

3) each facet of a simplex T' € A either lies on the boundary of €2 or is a common
face of exactly two simplices in A.

Given 1 < r < d, we consider the spline space
Si(A):={s€C"(Q): s|r €Il for all n-simplices T € A},

where II7 is the linear space of all n-variate polynomials of total degree at most d.
It is well-known that dim IT% = ("4).

n
The application of splines in numerical computations requires efficient algo-

rithms for constructing locally supported bases for the space Sj(A) or its subspaces

(such as finite element spaces). Moreover, if a local basis {s1,. .., sm} for Sj(A) is
in addition stable, i.e., for all @ = (aq,...,a,) € R™,
Kullole, < | Y ansi|, < Kalal,,
k=1
then a nested sequence of spaces
Sa(B1) € Sg(Az) C--- CSg(Ag) C -, (1.1)

may be used for designing multilevel methods of approximation on a bounded do-
main Q C IR", see e.g. [27] and references therein. In particular, the sequence (1.1)
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constitutes a multiresolution analysis on €2 if the maximal diameter of the triangles
in /A4 tends to zero as ¢ — oo, and if the constants 0 < K, Ky < oo are indepen-
dent of ¢. Note that the bases for the full space S;(A) are particularly interesting
since S5 (Ag) C SH(Ag+1) if Agya is a refinement of A, (This is not the case for
the finite element subspaces of Sj(A) when r > 1; see [14,25,27].)

The famous B-splines constitute a stable locally supported basis for the space
S5 (A) in the one-dimensional case n = 1 for all d > r + 1. Moreover, the dual
basis is also local and therefore provides a quasi-interpolant possessing optimal
approximation order. There are well known constructions of local bases for S;(A)
in the bivariate case n = 2 for all d > 3r + 2, see [1,21,22,26]. Stable local bases
were constructed in [7,23] for some superspline subspaces, and in [17,19] for the full
bivariate spline spaces S5(A), d > 3r + 2. In the trivariate case n = 3 local bases
are known for all d > 8r + 1 [2]. It was conjected in [2] that in general locally
supported bases for Sj(A) exist if d > (2" — 1) + n.

The main objective of this paper is to construct stable locally supported bases
for §;(A) and its superspline subspaces for alln > 2 and r > 1 provided d > 2" +1.

We make use of the nodal approach originated in the finite element method, see
e.g. [12], and extended to the problems of spline spaces on general triangulations
in [26] and more recently in [8-11,15,16,17]. We show that in the multivariate
case the nodal smoothness conditions can be better localized than usual Bernstein-
Bézier smoothness conditions [5,20]. The key point for our analysis is that certain
matrices associated with the smoothness conditions have a block diagonal structure,
which in the same time makes it possible to handle them efficiently in numerical
computations, see Sections 5 and 6. In particular, the dimension of any given
spline space Sj(A), d > r2™ 4+ 1 can be efficiently computed by a formula obtained
in Section 5.

The paper is organized as follows. In Section 2 we give some definitions and
preliminary lemmas. The nodal functionals that we use are described in Section 3.
Section 4 is devoted to a detailed analysis of nodal smoothness conditions. In
Section 5 we construct local bases for Sj(A), d > r2™ 4+ 1. In Section 6 we show
how to achieve stability of these bases. Finally, in Section 7 we extend the results
to the superspline subspaces of Sj(A).

§2. Preliminaries

2.1. Bases and minimal determining sets

It is obvious that the linear space Sj(A) has finite dimension. In this subsec-
tion we consider an abstract finite-dimensional linear space S, although in all our
applications we have § C S§5(A).

Let 8* denote, as usual, the dual space of linear functionals on §. Given a
basis {s;};es for S, its dual basis is a basis {);};es for S* such that

)‘isj = 5i,j, all 4,5 € J. (2.1)



It is easy to see that the dual basis {A;};cs is uniquely determined by {s;} e,
and vice versa, a basis {A;}jes for S* uniquely determines a basis {s;};es for S
satisfying (2.1).

In order to construct a basis {s; } jes for a spline space S it is often useful to find
first a basis {\;}jes for §* and then determine {s;};cs from the duality condition
(2.1). Usually, the required basis for §* can be selected by an algorithm from a
larger set A C &* that spans S*. A common example of such a set A is the set of
linear functionals picking off a coefficient of the Bernstein-Bézier representation of
splines s € S, see e.g. [2]. Keeping in mind the tradition upheld in the literature
on bivariate and multivariate splines, we will use the following terminology.

Definition 2.1. Any finite spanning set for $* is called a determining set for S.
Any basis for §* is called a minimal determining set for S.

A standard argument in linear algebra shows that a set A C §* is a determining
set for § if and only if As = 0 for all A € A implies s = 0 whenever s € §. Moreover,
a determining set A is a minimal determining set for S if and only if no proper subset
of A is a determining set. Since every linear functional on § is well-defined on any
subspace S of S, it is easy to see that a determining set for § is also a determining
set for S.

Suppose A is a determining set for S. If A is not a minimal determining set
for S, then A is linearly dependent. It is particularly useful to know a complete
system of linear relations for A.

Definition 2.2. Let A = {)\;};es C S8* be a determining set for S. Suppose that
the functionals A; satisfy linear conditions

Zcm)\j =0, 1€ 1, (2.2)
JjeJ

where ¢; ; are some real coefficients. We say that (2.2) is a complete system of linear
relations for A over S if for any a = (a;);es, with a; € R, j € J, such that

Zci,jaj =0, 1€ 1, (23)
JjeJ

there exists an element s € S such that A\;s = a; for all j € J.

Note that the element s € S as above is necessarily unique. Indeed, if there
are s1, s2 € S such that Ajs; = A\jso = a; for all j € J, then A;(s1 —s2) =0, j € J,
which implies s; = s9 since A is a determining set for S.

Let C := (¢; j)ier, jes- Then (2.3) means that the vector a lies in the null space
N(C) := {a : Ca® = 0} of the matrix C. Thus, there is a 1-1 correspondence
between elements s € S and vectors a € N(C), where a = (a;);jes, a; = Ajs. In
particular, the dimension of S can be computed as follows.
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Lemma 2.3. We have
dimS = dim N(C) = #A —rank C. (2.4)

Moreover, given a determining set A for & and a complete system of linear
relations for A over § with matrix C| it is straightforward to construct a basis for
S; see also [6].

Algorithm 2.4. Suppose A = {\;};e; C S* is a determining set for S, and
(2.2) is a complete system of linear relations for A over S. Let al¥l = (ag.k])je J>
k=1,...,m, form a basis for the null space N(C) of C. For each k = 1,...,m,

construct the unique element 5, € S satisfying \jsp = ag.k] for all j € J. Then
{51,...,8m} is a basis for S.

It is not difficult to determine corresponding minimal determining set, i.e., the
basis {A1, ..., A} for 8* dual to {31,...,8,}. Let

A= [a’g'k]]jEJ, k=1,....m-

Since the columns al*! of this matrix are linearly independent, A has full column
rank. Hence, there exists a left inverse of A, i.e., a matrix

B = bk jlk=1,...m,jeJ

satisfying BA = I,,,, where I,,, is the m X m identity matrix. Note that B is not
unique in general.

Lemma 2.5. The dual basis {5\1, e, S\m} can be computed by

S\k:Zka’)\j, k=1,...,m.
JjEJ

Proof: It is straightforward to check that the duality condition (2.1) is satisfied.
O

2.2. Geometry of a triangulation in R"

Recall that an /-simplex 7 (0 < £ < n) is the convex hull (vg,...,vs) of £+ 1
points vy, ...,ve € IR™ called vertices of 7. The simplex 7 is non-degenerate if its
/-dimensional volume is non-zero and degenerate otherwise. The dimension of a non-
degenerate /-simplex is £. By the interior of an /-simplex we mean its /-dimensional
interior. The convex hull of a subset of {vg,...,v;} containing m +1 < £ +1
elements is an m-face of 7. Thus, an m-face is itself an m-simplex. An (¢ — 1)-face
of 7 is also called a facet of 7, and any 1-face of 7 is also called an edge of 7. Note
that the only /-face of 7 is 7 itself, and the vertices of 7 are its 0-faces. (We identify
a vertex v and its convex hull {v}.)



Denote by 7; the set of all £-faces of the simplices in A (£ =0,...,n— 1) and
set

n
7=
£=0
where T, := A. We will also use notation V := 7Ty, £ := 7; and F := 7,,_1 for the
sets of all vertices, edges and facets of A\, respectively. The star of a simplex 7 € T,
denoted by star(7), is the union of all n-simplices T € A containing 7, i.e.,

star(r) = U T.

TeEA
TCT

In particular, star(T") = T for each T' € A.

Furthermore, given 7 € Ty, £ < n — 1, we denote by (7) the linear manifold in
IR™ parallel to the affine span aff(7) of 7 and by (7)* the orthogonal complement
of (1) in R™. Note that dim (7)* = n — £. In particular, (v)* = R"™ for all v € V.

Let 7 = (vg,...,v0) € Tg, £ <n—1, and let w € V be such that 7/ = (1, w) :=
{vo,...,vg,w) is in Tpy1. Since dim (1)t = n — £ and dim (7/) = £ + 1, the linear
manifold (7)* N (7) has dimension 1. Moreover, since aff(7) has codimension 1
as an affine subspace of aff(7'), it defines two half-spaces of aff(7'), and there is a
unique unit vector in (7)1 N (7') pointing into the half-space of aff(7’) containing
w. We denote this unit vector by

Orw

If v is a vertex in V), then o, ,, is obviously the unit vector in the direction of the
edge (v,w). If wy,...,wy, € Vand 7= (1, w1, ..., W) is in Tpym, £L+m < n, then
we set

o(T,7) == (Crawys -y Orw,, )

2.3. Nodal functionals

Given o = (01, ...,0,) a linearly independent sequence of unit vectors in R", and
a=(a1,...,0n) € ZY, let Dy denote the partial derivative

(& Jpp— [e31 [
Dg .= Dg!---Dgm,
where D, is the derivative in the direction o;,

Do, f(@) = Jim £ {f(z +oit) - f(2)},

for a differentiable f. By a nodal functional we mean any linear functional on Sj(A)
of the form n = 0,D%, where x is a point in €2, and §, is the point-evaluation
functional,

O f == f(x).

5



We denote by

a(n) = laf =) Jas <r (2.5)

the order of . Given s € Sj(A), the partial derivative D s is continuous everywhere
in Q if || < r, and piecewise continuous if |a| > 7. In this last case we have to
choose an n-simplex T' € A, with = € T, and apply our functional to s|p. The
following situation is of special interest since, for it, a natural choice for T exists.
Assume that for some 7 € 7 we havex € Tand x +e0; € 7,1 =1,...,m,if e > 0
is small enough. Then §,D%s|r is the same for all T' € A such that 7 C T. We will
choose T' in this way whenever the above situation occurs.

We will often use the following simple lemma.

Lemma 2.6. Let L be a linear manifold in R", dimL = m < n, and let o =
(01,...,0m) be a basis of L, where o4, ...,0,, € L are unit vectors. Suppose that
all components of & = (61, ...,0y,) are also some unit vectors in L. Then for any
« € ZZ™ there exist real coefficients cg such that

Dg= > cgDb.

Bemr™
|Bl=]c]

Proof: Since o is a basis for L, there are real coefficients a;; such that

m
5'1': E ai;04 izl,...,m.
j=1

Therefore,
m
D&izzaingj izl,...,m,
Jj=1
and
m a1 m Qm
Dg = (ZaljDUj) ...(ZamjDaj) 3
j=1 j=1
where o = (1,..., Q). O

2.4. Polynomial unisolvent sets

Let 7 be a non-degenerate £-simplex in IR". We set
(7)== {pl,: pel}, m=-1,0,1,2,...,

where 117, is the space of all n-variate polynomials of total degree at most m,
m =0,1,2,..., and 1", := {0}. By a change of variables, the elements of II% (1)
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may be considered as /-variate polynomials of total degree at most m defined on
7. In particular, dimIT¢ (7) = dimII¢, = (“Z"’), m=0,1,2,..., dimII* ,(7) = 0.
A finite set = C 7 is said to be II¢ -unisolvent if for any real ag, & € E, there exists
a unique p € II¢, () such that p(£) = a¢ for all £ € 2. Obviously, the number of
elements in any IT% -unisolvent set is equal to the dimension of IT¢,.

As a well known example of a IT -unisolvent set we mention the set of (“Z")
uniformly distributed points in the £-simplex 7 = (v, .. ., ve),

. tovo + - - + vy

En(r):={¢: €= — , where 4o + - - - + i, = m}. (2.6)
Moreover, its subsets
~ ~ -/
Ep(r):={¢€Bn(r): i >k, j=0,...,4}, < gm—, )
=k Eex i >k, j=0 ? 0<k 71 2.7

are examples of an (1) (e +1)-unisolvent sets in the interior of 7.
The following technical lemma will be very useful later.

Lemma 2.7. Let p € IIY (1) and 0 < k < ’?T_le. Suppose that

1) for each facet " of T,

6$Dtl;:"('r’,'r)p =0, allz € 7'I7 k= 0,..., ]{,‘,

2) for some an_(kﬂ)(eﬂ)—unisolvent set Z in the interior of T,
dep =0, all¢ € E.

Then p = 0.

Proof: Let 7q,...,7,41 be all facets of 7. For each 7;, let p; be a linear n-variate
polynomial such that p;|,;, = 0 and p;|, # 0. It follows from 1) that

e+l
p=05 ][]l
=1
where p is a polynomial in an—(k-l—l)(é-l—l)(T)‘ Since p;, i = 1,...,£+ 1, do not

vanish in the interior of 7, 2) implies that p(¢) = 0 for all £ € =. Therefore, p = 0,
and hence p=0. O



3. A nodal determining set for S}(A)

Suppose r > 1 and d > r2™ + 1. We now associate with each 7 € T a set N, of
nodal functionals on Sj(A). First, let v be a vertex in V = Ty. For each n-simplex
T € A containing v we define

:(I(T) _{6 Do’(v T) - : CVEZ?H |C\£| ZQ}7 0Sq§r2n_la

ran—1

U Noy(D).

q=0

Moreover, we set
ran—!
No,g = U Noo(T), U Nog = U No(T

TeEA TeEA
veT veT

Suppose now 7 € Ty for some £ € {1,...,n — 1}. For each 0 < ¢ < r2n=¢1,
let =, 4 be a Hf; ..,-unisolvent set in the interior of 7, where

prgi=d—q— (2" —g+1)(¢+1). (3.1)
Given any n-simplex T' € A containing 7, we define for each £ € &, 4,
NT#L&(T) = {5€D3(T,T) Pac Zi_za |a‘ = q}

Moreover, we set

pan -1
U U NT,q,ﬁ(T)a qu U qug
q=0 §€E, 4 rea
ran— -t
U NT,q,{a U N T, = U N
ezn. rea

Finally, for each T' € A = 7T,, we define
={d¢: £ €Er},

where Zr is a 11} (r+1)(nt1)" -unisolvent set in the interior of 1.

Note that in general the sets N 4 ¢(T) are not mutually disjoint for different
T containing 7. For example, let 7 = (vg,...,vn_2) € Tn_2, and suppose that
both T = (7,u,w) and T = (7,u,w) are in A. Then the nodal functional D/ +!
belongs to Nr r41,¢(T) N NT,TH@(T). On the other hand, if an n-simplex T' € A is
fixed, then the sets N; , ¢(T") are mutually disjoint for all 7, ¢, &.
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Theorem 3.1. The set
N = U N

T€T
is a determining set for Sj(A).

Proof: Let s € S5(A) satisty ns = 0 for all n € N. We have to show that s = 0.
To this end we choose an arbitrary T € A and show that s|p = 0. For each vertex
v of T, the set

No(T) = {0,Dg(, ry: a € ZY, |af < r2n 11
is included in N. Since o (v, T) is a basis of R", we have by Lemma 2.6,
Sy D2 s|p =0, alla € Z%, |af < r2™ 1,

for any sequence o of unit vectors.
For £ =10,...,n — 1, we now show by induction that for each ¢-face 7 of T, if
the components of o are some unit vectors in (7)*, then

0 DZs|lr =0, allz e, a€ Zi_e, laf < r2n—f 1, (3.2)

The validity of (3.2) for ¢ = 0 is shown above. Suppose 1 < £/ < n — 1. Let
a € Z’}:e, la| = g, with 1 < ¢ < r2»=%~1. In view of Lemma 2.6, it suffices to
prove (3.2) for 0 = o(7,T). We have p := DS(T,T)S‘T € I}, and p|, € Hs_q(T).
By the induction hypothesis, for each facet 7/ of 7,

5$DgI(T,,T)p|T =0, allz e, ¢ =0,...,r12" t—q.

Since the nodal functionals 55D3(T ) £ € 2,4, are included in N (T) C N, we
have in addition
deplr =0, all € € 2, 4.

Since 2, 4 is Hﬁ lq—unisolvent, Lemma 2.7 implies that p|, = 0, which confirms
(3.2).
In particular, (3.2) holds for each facet F of T, i.e.,
5$DZ(F,T)S‘T:0’ allx e F, ¢g=0,...,r.
Since N7 is included in N, we have in addition

(5§S|T =0, all ¢ € Ep.

Since Er is 1I7_ (r+1)(n _l_l)—unisolvent, Lemma 2.7 implies that s|7 = 0, which com-

pletes the proof. O



Theorem 3.2. For each T € A, let

N(T) := Nrp U D U ~@,

=0 r€T(T)
where T;(T') denotes the set of all £-faces of T. Then N (T) is a minimal determining
set for II7.

Proof: It is easy to see that the set of nodal functionals N (T') is the same, whatever
the triangulation A containing 7' may be. If we take A = {T}, then obviously
S7(A) = I and N = N(T). Therefore, N(T) is a determining set for II by
Theorem 3.1. It thus remains to show that #N (T) = dimI1?} = (”:d). We have

#N(T)=#Nr+ #NU(T)+Z_: > #N(T).

veTo(T) £=1 7eT(T)

It is easy to see that

YN = (n+d— (rT—Ll— 1)(n+1)>’
ran—1 1 on—1
#N,(T) = > (”n_irq> = ("J”?; ) v e To(T),
q=0
ran—t-1
#N(T) = <£+£W’q> (n;f;11rq>, TETUT), 1<f<n—1,
q=0

where p 4 is defined in (3.1).
We now consider the set

Z:={aeZ: |a|=d}.
Obviously, #7 = (":d). Therefore, the theorem will be established if we show that
#7Z = #N(T). (3.3)
For any nonempty subset I of {1,...,n+ 1}, let

Zr={a€Z: > a;>d—r2"*1},  if Li=#I-1<n,
i€l
Z{1,...,n+1} = Z,

and ~
Z{i}ZZZ{i}, 1=1,...,n+1,

Zy = Zr \ U Z1\{i} #I > 2.
i€l
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Taking into account the assumption d > r2™ + 1, it is not difficult to see that Z is
a disjoint union of the sets Z;. Hence,

#Z=_ > #ZI.

0=0 #I=0+1
We have
n+1
Z(1,...nt1} = {a€eZ: Zai <d-r, j=1,...,n+1}
=1
i)

={aeZ"': la|=d, a;>r+1, j=1,...,n+1},
+ J

and it follows that

~ n+d—(r+1)(n+1
#7201, . my1} = ( ( n ) )> = #Nr.
Furthermore, for each i = 1,...,n + 1, we have

ZZ. ={ac7Z". al=d, aiZd—r2"_1,
{5} +

so that #Z{Z-} = ("J”"sn_l), and hence

n+tl n—1
Z#Z{i}:(nﬂ)(“” )= S EN(T).

. n
i=1 vETo(T)

Let now I C {1,...,n+ 1}, £:=#I —1 < n. Then

Zr={a€Z: > a;>d-r2"""1 N a<d-r2"t, jel}

i€l i€I\{j}
r2n—l—1
= U {a€Z: Zai:d—q, a; >t g 41, j eI}
q=0 iel

A standard combinatorial argument shows that the cardinality of the set

{a€eZ: Zai:d—q, aj27'2”_e—q+1, jel}

il
is (“Thea) ("4, 119) . Since the number of subsets I of {1,...,n + 1} consisting of
£ + 1 elements is equal to (;”Ill) = #T4(T), we conclude that

N #Zr= ) #N(T), £=1,...n-1

#I=0+1 T€T:(T)
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Thus, (3.3) holds, and the proof is complete. O

Theorem 3.2 shows that the set N'(T) defines a Hermite interpolation operator
Hp : Cm2" ' (T) — II7 as follows. Given f € C™" '(T), let Hrf be the unique
polynomial in IT7} satisfying

nHrf=nf,  alneN(T). (3.4)

Obviously, this is a standard finite-element interpolation scheme, see e.g. [24,30].

The following estimation of the norm of Hpf in the case of uniformly dis-
tributed points easily follows from the general results given in [13]; see also the
proof of Lemma 3.9 in [16].

Lemma 3.3. Choose

Eq=5 70 allTeTp1<f<n—1,0<q<r2mt0 55
S =8, alTeT,, '
where ZF are defined in (2.7). Then
e fllz ey < K max h&™ ], (3.6)

neN(T)

where hp is the diameter of T, q(n) is the order of the nodal functional n, and K
is a constant depending only on n,r and d.

§4. Smoothness conditions

As shown in the previous section, N' C S85(A)* is a determining set for Sj(A).
Therefore, N is a spanning set for S;(A)*. However, as we will see, there are some
linear dependencies between the elements of N, called nodal smoothness conditions.
Our next task is to describe these conditions.

Let 7 € Ty forsome 0 < £ <n—1,and let F = (T, u1,...,Up—p—1) € Tn—1 be an
interior facet of A attached to 7. Then there are exactly two n-simplices T, Ty € A
sharing the facet F'. Let Ty = (F,u,—y4), To = (F,w). Since the components of

0'(7_; Tl) = (O-T,Uq) sy O-T,un_[)

form a basis for (7)*, and since o,,, also lies in (7)%, there exists p € R™™ ¢,
= (p1,- .-, pn—s), such that

n—~_
Orw = E 3O 7 ;-
1=1
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Lemma 4.1. Ifs € S(A), then for all{ € T, a € Zﬁ_e_l and 0 <7r' <r,

« r! ‘,B| o B
5§D0'(T,F)D0'-r,w8 - Z (/8 ,U/'Bé-g U(T,F)DG(T,T1)87 (41)
gemn—t
+
1Bl=r'
— Bl e B Br—
where ('g') = m, pP o=t it
Proof: Let P11 = 8|T1, P2 = 3|T2 and 0; ‘= Oru;, 7 = 17 R /. We have
n—~¢ ,
0Dy (7,7 Do, 01 = 5£D?<T,F)(Zﬂi17m) p1
=1
= 0¢ DY 18l BpB ... DBn—t
= %Yo (r,F) Z 8 g g, | P1
ﬂezi—‘
18l=r
8 o
- Z (IB #’ﬁ(SEDa(T,F)DU(T,Tl)pl-
56%_’;_4
18]=r

Since s € C"(Ty UTy) and ' < 7,

Dy pi(z)=Di pa(z), allze€F=T1NT.

Therefore, , ,
5§Dg(T,F)DZ;T,wp1 = 5§Dg(T,F)DgT1wp23
for all £ € F', in particular for £ € 7. Thus,

a r! ‘,8‘ a
5£DU(T,F)DO'Tpr2 = Z < 3 ru‘ﬁ(sﬁDa(T,F)Dg(T,Tl)pl' (42)

zn—1
Be +

18|=r

Finally, we note that

a v _ a B _ N7
Do,m Do, = Dotrmyy o(r.)Do(r,11) = Do(rmyy (4.3)

where v = (a1,...,an_¢ 1,7"), y= (1 + B1,-- -, ¥n—v-1+ Bn_t_1,Bn_st), and the
observation that by definition

5€DZ(T,T2)3 = 5€DZ(T,T2)]92, 6§DZ(7-,T1)8 = 5§DZ(T,T1)]91
(see Section 2.3) completes the proof. O
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Remark 4.2. Lemma 4.1 shows that the condition (4.2) holds for all £ € 7, a €
Z?r_e and 0 < 7' < r if the two polynomials p; and ps defined on T; and T>,
respectively, join together with C"-smoothness across F' = T3 NT5. It is not difficult
to see that the converse is also true. Note that for 7 € Ty, Lemma 4.1 as well as its
converse were given (in a slightly different form) in Theorem 4.1.2 of [11], and (in
the bivariate case) in [16].

We now concentrate on the conditions (4.1) that involve the nodal functionals
in the set A defined in Section 3. Namely, Lemma 4.1 implies that the following
linear relations between the elements of N hold:

1) given v € Ty and 0 < ¢ < r2"~1, the system R, , of linear conditions

5UD0'(’U,F)D = Z ( 100 D5 1Dy 1y (4.4)

ﬁEZ"
Iﬁl—r

for all 0 < ' < min{r, ¢}, all a € Z'}r_l, with || = ¢ — 7/, and all interior facets
F € 7,_1 such that v € F,

2) given 7 € Ty (where 1 <£<n—-2),0<qg<72" %1 and ¢ € =4, the
system R, 4 ¢ of linear conditions

a r! ‘[3‘ ﬂ B
5€DO'(T,F)D0'-,-7M = Z ( 8 5§DU(T F)DU(T,Tl)v (45)

n—~
ﬂeZ+

18l=r
for all 0 < 7' < min{r,q}, all a € Z:‘L_e_l, with || = ¢ — 7/, and all interior facets
F € T,_1 such that 7 C F, and
3) given an interior facet F' € Tp,—1, 0 < ¢ < r, and £ € Epg, the linear
condition R q.¢,

0¢ D3, = (=1)1 5‘£D0'(FT1) (4.6)

(Here and above w, T; and p; correspond to a particular F' and are defined as in
Lemma 4.1.)

Remark 4.3. In view of (4.3) it is easy to see that the smoothness conditions in
Ruq> Rrqe oF REqe involve only the nodal functionals in N, 4, Ny g¢ or Np g,
respectively. (See the definition of the sets of nodal functionals N, , and N, 4¢ in
Section 3.)

Let
ron 1

Ro=J Rug vET,

T2n—£—1

7Q’T = U R’ﬂq’ U R 7q7£’ TE,]Z’ 1 Sggn_l'
ge-—"rq
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Theorem 4.4. The set
R= J R, (4.8)
TET\Tn

is a complete system of linear relations for N over Sj(A).
Proof: By Theorem 3.1, NV is a determining set for S%(A). Suppose the system
R is written as

ZCZ'J"I’]]':O, iEI,

JjeJ
where I,J are some index sets, {n;}je; = N, and ¢; ; real coefficients. Let aj;,
Jj € J, be any real numbers satisfying

Zci,jajzo, 1€ 1.
JjeJ

According to Definition 2.2, we have to show that there exists a spline s € Sj(A)
such that n;s = a; for all j € J. We first construct the polynomial pieces of s,
pr = s|7, T € A, as follows. By Theorem 3.2, N'(T') is a minimal determining set
for 1I;. We define pr to be the unique polynomial in II7; such that

n;pT = a;, all n; € N(T)

We thus have to prove that pp, T € A, join together with C"-smoothness. To
this end it suffices to consider two n-simplices T, Ty € A sharing a facet F' € 7,1
and show that the two polynomials p; := pr, and ps := pr, join with C"-smoothness
across F. This, in turn, will follow if we show that

5ch7;lp,w (p2 —p1) =0, alze F, r=0,...,r. (4.9)

where w is the vertex of Ty not lying in F. (That is, To = (F, w).)
We first prove by induction on £ that for each ¢-face 7 of F, £ =10,...,n — 2,
and for all 7/ =0,...,r, and o € Z" %71, with |of < r2n—t-1 — ¢/,

0D Do (p2—p1) =0, allzer. (4.10)

Let £ = 0, and let v be a vertex of F. Given ' = 0,...,7 and o € Z" !,
with |a| < r2"~! — ¢/, the functional nj;, = 6 D3, 7y D5, , is In N (T,). Hence,
NjoP2 = aj,. Let us compute n;,p1. We set n;, = 6UD:(U,F)D§(’U,T1) e N(Th),
|8 = r'. By (4.4), the equation

Mo = <|g|)uﬁnjﬁ =0

n
ﬂeZ+

18l=r'
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belongs to R. Therefore,

6]
D O (A
Bem?
+
181=r"
On the other hand, since 7;, € N'(T1), we have 7;,p1 = a;,, and it follows that
6] 8|
MioP1 = Z (ﬁ i, = Z 3 wPaj, = aj,.
pez’y Bex?
181=r" 181=r"

Thus, 7, (p2 — p1) = 0, which confirms (4.10) for £ = 0.
Suppose 1 < £ < n — 2, and let 7 be an ¢-face of F. Given ' = 0,...,r and
o € Z" 71 with |a| < 727t~ — ¢/, consider

p=Dg mDy_ (P2 — )| € Hﬁz_q(T),

Or,w
where g := |a| + r’. Let us show that for each facet 7/ of 7,
0o D3 (i P =0, allzer, ¢ =0,...,r12" ¢ —q. (4.11)

Since the components of o(7/,7) and o (7, F) form a basis for (7')* N (F), we have
by Lemma 2.6, that

ql « _ Y
Dl Doy = Y Dl
~ezmn—1

Ivl=lal+q’

Moreover, since o, ., € (1)* C (7)1,

,rl
S DD DT
DO.T’w o C’Y7r J(TlvF) O"r’,w'
F=0 emn—!

Iv|=r' -7

Therefore, we have for z € 7/,

5ng(T’77)p - 5wDZ’(T’,T)Dg(T,F)DZ"TYw (p2 - pl)

1
.
:Z Z Z CW&W’fdezz;n'y,F)D;T,’w(pz—pl)-
=0 yezn—t sezn—!

IvI=lal+q’ |5|=r'—F

By the induction hypothesis, every term in this last sum is zero (since 7 < r and
V| + ] +7 = |a|+¢ +7" = q+q <r2"¢), and (4.11) follows. We show now that

dep =0, all { € 2, 4, (4.12)
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where =, ; is a Hﬁ . q—unisolvent set in the interior of 7 as defined in Section 3. Let
i !

§ € Er ¢ be given. Similar to the proof in case £ = 0, we set 1), := 6¢ D, ;D5 €
N(Tz), nj, = 5€D3(T,F)D5(T,T1) € N(Ty), |8| = r'. By (4.5), the equation

B
Mo — 3 <ﬁ wni, =0
ﬁeZZ"

18l=r

belongs to R. Hence, we get

MiP1 = ('g‘)#’mgm: > (@)uﬁ%

pem’ " pem "
18l=r! 18|=r!
= Qj, = Njo P2,

and (4.12) is proved. In view of (4.11) and (4.12), we conclude by Lemma 2.7 that
p = 0, which establishes (4.10).
To prove (4.9) for any given ' = 0,...,r, we set

p=Dg, (p2—p1)|F € .

Analysis similar to the above shows that by (4.10) it follows that for each facet
of F,
5$D3(TF)p:0, alzer,q=0,...,2r—r'.

Furthermore, given £ € Zp,s, the nodal functionals 7n;, := 5€D;’( FTy) and n;, =
5§DQ'F,w are in N (T1) and N (T3), respectively. By (4.6),

5£D2F,w = (—1)T 5£D;(F,T1)a

and hence , ’

ep = Njp2 — (—1)" njp1 = a5, — (=1)" a;, = 0.
Thus, Lemma 2.7 implies that p = 0, which establishes (4.9) and completes the
proof of the theorem. O

§5. Construction of a local basis for Sj(A)

Let d > r2"+1. Since NV is a determining set for S5(A) by Theorem 3.1, and R is a
complete system of linear relations for N over 87 (A) by Theorem 4.4, Algorithm 2.4
can be applied to construct a basis {51,...,5,} for S;(A). To this end we only
need to choose a basis {al'l, ..., al™} for the null space N(C) of the corresponding
matrix C. In this section we will show how to choose the basis for N(C) so that
the resulting basis for S5 (A) is local as defined below.

Let v be a vertex of /A. We set star!(v) := star(v), and define star” (v), v > 2,
recursively as the union of the stars of the vertices in 7o N star’™!(v).

17



Definition 5.1. Let S be a linear subspace of Sj(A). A basis {s1,...,sn} for S

is called local (or 7-local) if there is an integer y such that for each £k = 1,...,m,
supp s C star”(vg), for some vertex v of A, and the dual functionals Aq, ..., Ay,
defined by (2.1), can be localized in the same sets star”(vy), ..., star”(vg), i.e., for

each k =1,...,m, A\gs = 0 for all s € S satisfying s|searv(v,) = 0

We say that an algorithm produces local bases if there exists an absolute (in-
teger) constant 7 such that any basis constructed by that algorithm is at most
~-local.

The key observation for our construction is that the matrix C' of the system R
has a block diagonal structure. More precisely, by Remark 4.3 we have

=[C 0], 51)
C= diag(CT)TET\Tna

where C; is the matrix of the system R, defined in (4.7), and O is the zero ma-
trix corresponding to the nodal functionals in Ny, T € T,, not involved in any
smoothness conditions. Moreover, each matrix C; itself is block diagonal. Namely,

Cr = diag(Cr q) g=o0,... ran—t-1, TET, 0<£L<n-1, (5.2)

where C; , is the matrix of the system R, , defined in (4.4)—(4.7). If 1 </ <n—1,
then the matrix C; , is again block diagonal,

CT ,q — dla’g(c 7,8,§ )‘SGET’Q’

with C; 4 ¢ being the matrix of the system R, ,¢. By Lemma 2.3, we have

dmSH(A) =#N — > rankC,

TET\Tn
r2n ! pon 1 (53)
=#N — Z Z rank Cy 4 — Z Z Z Z rank C; 4 ¢
v€To ¢q=0 L=17€Ty q=0 ¢E€&,,

Remark 5.2. The formula (5.3) leads to an efficient computation of the dimension
of the space S} (A) by applying to the small matrices C, 4 and C; 4 ¢ the standard
numerical algorithms of rank determination (see e.g. [29]).

In view of (5.1) and (5.2), N(C) is an (outer) direct sum of N(C,,), ¢ =
0,...,72" %1 7 €T, 0 < ¢ <n—1. Hence, if we know bases for all N(C, ,),
then we can combine them into a basis for N(C) that trivially extends to a basis

for N(C). Let Ny g = {m" P} e, , and Crg = (ci3%)ict, . je, 4, 50 that Ry g has
the form

[T7q [T7q y
Z caon; =0, 1€ 1.
J€Jr q

18



Foreach 7€ 75, 0<¢<n—1,and ¢=0,...,72" %1 suppose
T,q,k
alm @kl — (ag q ])jeJﬂq’ k=1,...,m.g (5.4)

form a basis for N(C, ,). In addition, for each T € Ty,, let alT-0:Fl = ((l.gT’O’k])jGJTﬁo,
k =1,...,mp, be any basis of R™7, where mp = #Jro = #Nr = #Zr. We
define alm%k = (&E-T’q’k])jej, with J = Uy 4J; 4, by
a[T7q7k] = {a.[j’r’q’k]7 ifj 6 JT,q7

I 0, otherwise.
Then the vectors al™%* k=1, .. Mrg, @=0,...,q, 7T €Ty, 0 <L < n, where

n—~{—1 :
w= (o s 6

obviously form a basis for N(C). The corresponding basis

slrak] k=1,....m.q, ¢=0,...,q5, TETy, 0<L<n, (5.6)
for S (A) produced by Algorithm 2.4 satisfies

ndmek =0, allp e N\ N, '

Denote by

ekl k=1,....m;q, q=0,...,q, T7ET,, 0<L<n, (5.8)

the dual basis for S§(A)* determined by the duality condition

S\[T’q’k]é[T”q”k'] = 1’ if = 7—/3 q = ql and k = kla
0, otherwise.

Theorem 5.3. The basis (5.6) for S5 (A), where d > r2™ + 1, is local. Moreover,

supp §0F  star(r), (5.9)
and the dual basis (5.8) satisfies
Mm@kl =0 foralls e S (A) such that s|gar(r) = 0. (5.10)

Proof: By (5.7) we have n3[m%*l = 0 for all n € N'\ N, 4. Since N, NN (T) #
only if 7 C T, (5.9) follows from the fact that N'(T') is a determining set for II7%,
see Theorem 3.2. To show (5.10), we consider the matrix A with columns

glm -kl k=1,....mrq, q=0,....q0, TETy, 0<L<n.
This matrix is block diagonal,
A = diag(Ar)rer,
A = diag(AT,q)qZO,...,qu T€T, 0<4<n,
where A, ; := (a‘[j’r’q,k])je‘]ﬂq,k:l,“_,m_r’q. Let B, 4 be a left inverse of A, ,. Then
B := diag(B;),¢cT, with B; = diag(Br )¢=0,....q> T € Te, 0 < £ < m, is a left inverse

of A. Hence, by Lemma 2.5, A[™%#! is a linear combination of n][.T’q], j € Jr g This

implies (5.10) since for every 1 € N, , we obviously have s = 0 if s|gar(r) = 0. O
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Remark 5.4. A similar analysis of the space Sj(A), d > r2™ 4+ 1, was done in [2]
by using Bernstein-Bézier smoothness conditions [5]. However, the existence of a
local basis for S} (A) was shown in [2] only for n < 3. The main advantage of the
nodal techniques used here is that the matrix C in (5.1) is block diagonal, while
the matrix of Bernstein-Bézier smoothness conditions is block triangular (see [6]).

§6. A stable local basis for Sj(A)

In this section we show that if the sets =, , and Z¢ as well as the bases (5.4) for
N(C;,q) are properly chosen, then an appropriately renormalized version of the
local basis for S (A) constructed above is in addition stable.

Let us denote by wa the shape regularity constant of the triangulation A,

ht
WA = max —,
Ten pr

where hr and pr are the diameter of 7' and the diameter of its inscribed sphere,
respectively. Given M = pcx T, where A C A, we denote by [M]| the n-
dimensional volume of M.

Definition 6.1. Let S be a linear subspace of Sj(A). We say that a basis
{81,...,8m} for S is L,-stable if there exist constants K1, Ko depending only on
n,r,d and wa, such that for any o = (a1,...,q;,) € R™,

< Ksl|alle, -

m
Killall, < | Y ansel|, <
= »(2)

To establish stability of a local basis it seems most convenient to use the
following general lemma; see also [23].

Lemma 6.2. Let {sq,...,sn,} be ay-local basis for S, and let {\1,...,A\p,} C S*
be its dual basis. Suppose that

||Sk||Loo(Q) S Cla k= 17 -.., MM, (61)
and
|)\k8| < 02||S||Loo(star7(vk)), allse S, k=1,...,m, (6.2)
where supp s C star?(vg) as in Definition 5.1. Then for any a = (a1,..., Q) €
R™,

m
-1
e D R
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where K1, Ko are some constants depending only on n,r,d,vy and wa.

Proof: Let s = > -, akm‘ We first prove the upper bound in (6.3).
Given an n-simplex T € A, we have by (6.1)

(5 Jawm)”, 1<
Qg y 1 S p < oo,
187l L, (ry < CL#Er) P VkeDy
max |agl, if p = o0,
kES T
where
Yp:={k: T C supp sk} (6.4)

As in the bivariate case (see Lemmas 3.1 and 3.2 in [23]), it is not difficult to show
that

#{T € A: T C star” (vg)} < Kq, (6.5)
and
star” (v r
max{% : T C starV('uk)} < Ko, (6.6)

where Ki, K5 are some constants depending only on n,v and wa. Hence, for
1 < p < oo we have

151 oy = D lslrlls, oy < KaCRHST)Pal? .
TeEN

which shows that the upper bound will be established for all 1 < p < oo if we
prove that #X7 is bounded by a constant depending only on n,r,d,y and wa. To
this end we note that since the basis {s1,..., s} is y-local, supp sy C star?”(v),
for all k € Y7, where v is any vertex of T. Therefore, the set {sx : k € Xr}
is linearly independent on star?”(v), and its cardinality #X7 does not exceed the
dimension of the space of all piecewise polynomials of degree d on star?”(v), i.e.,
#¥Xp < N (";';d), where N is the number of n-simplices of A lying in star?”(v). By
(6.5), N is bounded by a constant depending only on n,y and wa, and the assertion
follows.
To establish the lower bound in (6.3), we obtain by (6.2),

|ovi| = |supp si|"/?|Aks| < Calsupp si|'/?||s| 1. (star (wr))» k=1,...,m.

Since [[s]|z_ (starr (vp)) < |I8llzoo (), this completes the proof in the case p = oo.
Suppose 1 < p < oo. By a Nikolskii-type inequality, see e.g. [27, p. 56], for some
n-simplex T}, C star” (vg),

||3||Loo(star"/(uk)) = ||S|Tk||Loo(Tk) < K3|Tk‘_1/p||8‘Tk:||Lp(Tk)’

where K3 is a constant depending only on n and d. Since supp si C star?(vg), we
have by (6.6),
suppsk| _ -
——— < K.
| Tk |
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Therefore,
>l < KalRaCo Y [ sl
k=1 k=1"Tk

We now have to bound the number of appearances of a given n-simplex T} on the
right-hand side of the above inequality. If Ty, = T}, , then star” (v, ) Nstar? (vg, ) #
(. Hence, supp sg, C star3?(vg, ). Thus, for all k such that Ty = T,

supp s C star®? (vg, ).

The set {sg : Ty = Tk, } is linearly independent on star3” (vk, ), and it can be shown
as above that its cardinality is bounded by a constant K4 depending only on n,y

and wa. Therefore,
Z o< o
T,

which completes the proof. O

We are ready to formulate our main result about stability of the local basis
constructed in Section 5. For each 7 € T, denote by h, the diameter of the set
star(7). (This is compatible with the above notation hr for T € 7, = A since
star(T) =T.)
Theorem 6.3. Suppose that

1) every Brq, ¢ = 0,...,q0, T € T, 1 < £ < n (where Erg := Zp if T € Tp),
is chosen to be the set of uniformly distributed points in the interior of T, as
defined in (3.5); and

2) for each ¢ =0,...,q0 and 7 € Ty, 0 < £ < n, the vectors
alm ekl — (a 7ok )JeJTq, k=1,...,m.q, (6.7)

form an orthonormal basis for N(C ,).

Let 379k be the local basis functions for S§(A), d > r2™ + 1, constructed as in
Section 5. Then for every 1 < p < oo, the splines

h;q‘Star(T)‘_%g[T’q,k]a k:17"'7mT,Q7 q207"'aQ€7 7—672; Oﬁgﬁn,

form an Ly-stable local basis for S§(A).

Proof: As shown in Section 5, the splines 5%k are 1-local, and supp §7¢*] ¢
star(7). By (6.6),

|supp §[T,Q,k]‘ < |star(7)| < R2|Supp g[T,q,k]"

where Ky depends only on n and wa. Hence, in view of Lemma 6.2, the theorem
will be established once we prove that

182K L (@) < C1hY, (6.8)
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and
INDOM| < CohZY|s| Lo (star(ry)s  all 5 € SH(A), (6.9)
where the constants Cy, Cs depend only on n,r,d and wa.

We first show (6.8). Since supp §"* C star(r), we have ||5"0F||; (o) =
||§[T’q’k]||Loo(star(7))- Let T be an n-simplex in star(7), and let Hr be the Hermite
interpolation operator defined in (3.4). Since §™%*l|; = Hp5m%*]| 1 we have by
Lemma 3.3,
k]|

||S 7,9, ]|T||L (T) <K5 IIJ]@,(};_‘) hq(n)|,r’s 7,9,

where Kj5 depends only on n,r and d. Now, by (5.7), n3lmakl = 0 for all n €
N(T) \ g, and

ngTaq]§[7'7Q7k] — a‘[j’r’q’k]’ J c JT,(]'

Since the vectors al™®F k=1, .. .,Mr ¢, are orthonormal, we have |a£.T’q’k]\ <1.
Taking into account that ¢(n) = ¢ for all n € N 4, we arrive at the estimate

||§[T’q’k]|T||LOO(T) < K5h3~ < Kshd,

and (6.8) is proved.
By our hypotheses, the columns of the matrix

Arg=1a5Mes emme (6.10)

are orthonormal. Hence, Af’q is a left inverse of A, ;. By Lemma 2.5 and the proof
of Theorem 5.3, it follows that the dual functional A[»%*! can be computed as

7q7k] — Z a[77q7 [qu]‘

J€Jr q
Therefore, for any s € Sj(A),

|)\[qu7 s|—‘ Z a ,q,k] ,q] ‘<#J'rqmarx |77 7,q] |
J€Jr q

Given j € J; 4, let T be an n-simplex such that 7 C T and n[-T’q] € N(T). Since

J
ngT’q] is a nodal functional of order ¢, we have by Markov inequality (see, e.g. [13]),

[T<1|

In; s Usr| < Keppllslrlloor) < Kowhha®lslz . star(r)»

where Kj is a constant depending only on n and d. Since #J, ; = #N 4 is bounded
above by a constant depending only on n,r,d and wa, the estimate (6.9) follows,
and the proof is complete. O

It is easy to see that Theorem 6.3 remains valid for any 2, , such that the
Hermite interpolation operator defined by (3.4) satisfies (3.6), and for any choice of
the bases (6.7) for N(C; 4) such that the condition number of the matrix (6.10) is
bounded by a constant K depending only on n,r,d and wa; compare [6]. However,
there is a good reason to prefer, at least in practice, an orthonormal basis for
N(C;,q), as explaned in the following remark.
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Remark 6.4. There is a numerically efficient way to compute an orthonormal
basis almk = (GET’q’k])jer, k=1,...,m, g, for each N(C;,), as required in the
above theorem. Namely, construct by an appropriate algorithm a singular value
decomposition Cr 4 = QLXQQI; of the matrix C; 4, where (Jr, Qg are orthogonal
matrices, and X = [D O], D = diag(o1,...,0p), with o7 > --- > 0, > 0 being
the singular values of C; 4, see e.g. [29]. Obviously, m, , is equal to the number of
zero columns in X (including the columns corresponding to zero singular values).
Hence, the columns of the matrix [O Imw]T constitute an orthonormal basis for
N(X). Since C;,Qr = QrX, the columns of 4., = Qr[O ImT,q]T form the
desired orthonormal basis for N(C; ,). Thus, the matrix A, ; consists of the last
My q columns of Qg.

87. Superspline spaces

In this section we construct stable local bases for the superspline subspaces of

Sh(A).

Definition 7.1. Let p = (p;),;e7\(7,_,uT,) be a sequence of integers satisfying
r<p, <27l reT, 0<4<n-2. (7.1)
The linear space of splines

S7P(A) == {s € S3(A) : s is pr-times differentiable across T,

forall 7€ T\ (Tno1UTn)} (72)

is called a superspline space.

In the limiting case p, = 2" %71, 7 € T\ (T,—1 U T,.), the superspline spaces
were introduced and studied in [8-11], see also [3,4]. In particular, local bases for
SyP (L), where p, = 2"~*71, were constructed in [11] and [4]. For general p,, but
only in the bivariate case n = 2, the superspline spaces were explored in [22,28]
and, more recently, in [18,19].

As we will see, our method of construction of a stable local basis can be applied
to the spaces (7.2). We first have to extend the system R of smoothness conditions
defined in (4.4)—(4.8) to a larger system R, by allowing a larger range of ' in
(4.4) and (4.5). Namely, we include in the extended systems R, , and 7A277q7§ all
conditions (4.4) and (4.5), respectively, where 0 < ' < min{p,,q}. The systems
RF,q,¢ are not enlarged, i.e., we set ﬁp,q,g =RFq.c-

By the method of proof of Theorem 4.4 it is not difficult to establish the
following analogue of it.

Theorem 7.2. The set R is a complete system of linear relations for N' over

SHP(A).

It is easy to see that the matrix C of the system R possesses a block diagonal
structure similar to the structure of the matrix C' considered in Section 5. Therefore,
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all results about the dimension and the local bases carry over to the superspline
spaces. Thus, we have

dim 8P (A) = #N — Z rank C,

TET\Tn
e A 73)
= #N — Z Z rank C,, , — Z Z Z Z rank C; g ¢,
vETy ¢q=0 L=17€T; q=0 E€E,,

where (3’7, C‘U,q and C’T,q,g are the appropriate blocks of C. Define the splines

glmakl k=1, . Mg q¢=0,...,q,, TET, 0<£<n, (7.4)
by the condition
n sk =t e gy, (7.5)
nglmekl = g alln € N\ Nyq,
where
amek = @My, s k=1, (7.6)

A

is a basis for N(C ).
Theorem 7.3. The splines (7.4) form a local basis for §;*(A), where p satisfies
(7.1), and d > r2"™ + 1. Moreover,
supp 5179 C star(r), (7.7)
and the dual basis (5.8) satisfies
Amakls — 0 for all s € Sh(A) such that 8|star(r) = 0- (7.8)
Since (7.4) is a local basis for S (A), Lemma 6.2 can be applied, and the same
argument as in the proof of Theorem 6.3 shows that the following result holds.

Theorem 7.4. Suppose that

1) every Brq, ¢ = 0,...,q0, T € T, 1 < £ < n (where Erg := Ep if T € Tp),
is chosen to be the set of uniformly distributed points in the interior of T, as
defined in (3.5), and

2) for each ¢ =0,...,q; and 7 € Ty, 0 < £ < n, vectors al™®k = (&‘[7~T7q,k])j€‘]1_yq,

A

k=1,...,mqq, form an orthonormal basis for N(C; ;).

Let 3I™%k] be the local basis functions (7.4) for S?(A\), where p satisfies (7.1), and
d > r2™ 4+ 1. Then for every 1 < p < oo, the splines

h;q‘Star(T)‘_%g[T’q’k]u k:17-"7mT,q7 qzoa---aqea 7_6727 Ogﬂgn,

form an Ly,-stable local basis for S;°(A).
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