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Abstract

We suggest a local hybrid approximation scheme based on polynomi-
als and radial basis functions, and use it to improve the scattered data
fitting algorithm of [7]. Similar to that algorithm, the new method
has linear computational complexity and is therefore suitable for large
real world data. Numerical examples suggest that it can produce high
quality artifact–free approximations that are more accurate than those
given by the original method where pure polynomial local approxima-
tions are used.
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1 Introduction

In this paper we suggest an improvement of the scattered data fitting method
of [7] based on the extension of local polynomial approximations to bivariate
splines. Instead of computing the local polynomials directly from data, we
first compute hybrid local approximations consisting of a polynomial term
and a linear combination of radial basis functions. This is done by the least
squares method, where the approximation power is controlled with the help
of the minimal singular value of the local collocation matrix [5, 7], and the
knots are selected by an ascending greedy algorithm. These hybrid approx-
imations are subsequently converted to a polynomial of higher degree and
finally extended to a spline, as in [7]. Clearly, the overall method retains its
linear computational complexity which is very important for dealing with
large real world data.

This approach is motivated by the well known excellent quality of the
radial basis function approximation of scattered data contrasted with the
difficulties in its computation and use for large data sets (the need for so-
phisticated numerical techniques to compute the approximation or interpo-
lation and to evaluate it at a low computational cost), see [2]. Since in our
approach radial basis approximations are only computed for very small sub-
sets of the data, these difficulties are irrelevant. Note that similar ideas have
been explored previously in [11] in the context of the two–stage scattered
data fitting methods, where, however, the use of radial basis functions has
not apparently led to a substantial improvement comparing to a pure poly-
nomial local approximation method. A different approach for obtaining a
smooth overall approximation by using radial basis functions only locally is
the partition of unity method (see e.g. [13, 20, 28]).

There are obvious advantages in constructing scattered data approxima-
tions as spline surfaces: Apart from the fact that such surfaces can be directly
used for the CAGD applications, we mention the prospects of efficient post-
processing (e.g. compression) by using spline wavelets and other non–linear
methods (see [3, 6]).

In addition, we note that our scheme includes adaptation of the scaling
parameters of the local radial basis functions to the local data. The related
problem of locally adapted scaling for the radial basis methods has been
considered e.g. in [1, 19, 23].

In this paper several different sets of data are considered to illustrate
the performance of the proposed approach. The results are systematically
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compared with those presented in [7]. Our results for Franke test function
are also compared to [12]. For each test, figures showing the data distribu-
tion and the approximating surface are given, as well as tables reporting the
parameters used, the approximation errors and, for larger sets, the compu-
tational time. The tests confirm that (almost) artifact–free surfaces can be
obtained with our hybrid scheme even using very fine grids, so improving the
accuracy of the approximation.

The computational cost of the method depends heavily on the average
number of knots used for constructing the local approximations, besides on
the prescribed minimum number of local data. So, as the experiments con-
firm, it is higher than that related to the original method if the averaged
number of knots used for the local hybrid approximations is significant.

This behaviour is an obvious consequence of our choice of using an as-
cending knot insertion strategy to determine the knot distribution for each
local hybrid approximation (see Section 3). On the other hand, we remark
that it remains linear with respect to the number of data points because the
maximum number of local data is controlled by an input parameter.

The paper is organized as follows: After summarizing in Section 2 the bi-
variate spline approximation method based on direct extension of local poly-
nomials, we introduce in Section 3 the local hybrid approximation scheme
and provide the pseudocode (Procedure LHA) to explain its implementation
details. The remaining details of the improved scattered data fitting method
are clarified in Section 4. Finally, Section 5 is devoted to a detailed presenta-
tion of the numerical results with synthetic data (Franke test function) and
the real world data already used in [7].

2 Bivariate Spline Approximation Based on

Direct Extension of Local Polynomials

In this section we summarize the main lines of the scattered data approxi-
mation method introduced in [7, 16] which is based on direct extension of
local polynomials to bivariate splines.

First of all, it is a robust scheme because, as shown in [7], for many
different data distributions it gives good results, in the sense of both shape
recovery and errors at the data or against the exact function for synthetic
examples. It is also efficient as its computational complexity grows linearly
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with the number N of data points { (Xi, fi), i = 1, . . . , N ,Xi ∈ Ω ⊂ IR2 }.
Moreover, it does not require construction of a good (e.g. shape regular) data
triangulation, which may be challenging for unevenly distributed data, for
example contour or track data. Finally, it relies on a numerically stable two–
stage procedure that separates from each other the tasks of computing high
quality local approximations and obtaining an artifact-free global surface
model.

We first briefly describe the second stage of the method of [7] since our
approach is not different at this point. Full details may be found in [7].

Let 42 be the so-called uniform type-2 triangulation or the four-directio-
nal mesh [4], which is obtained by drawing vertical and horizontal straight
lines at equal distances hx and hy, respectively, and adding the two diagonals
to each rectangular cell, see Figure 1(a).

(a) (b)

Figure 1: (a) The four-directional mesh. (b) The triangles in T .

Denote by Sr
d(42) the space of bivariate piecewise polynomial splines of

smoothness r ≥ 0 and degree d ≥ r + 1,

Sr
d(42) := { s ∈ Cr(IR2) : s|T ∈ Pd for all triangles T ∈ 42},

where Pd is the space of bivariate polynomials of total degree d.
Every polynomial patch s|T , T ∈ 42, of a spline s ∈ Sr

d(42) is determined

by its Bernstein-Bézier coefficients c
(T )
ijk , i + j + k = d, i, j, k ∈ IN, which can

be associated with the domain points η
(T )
ijk ∈ T ,

η
(T )
ijk :=

ia + jb + kc

d
,
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where a, b and c are the vertices of T . We denote by Dd,T := { η
(T )
ijk :

i + j + k = d , i, j, k ∈ IN } the set of all domain points in T , and by

Dd,42 =
⋃

T∈42

Dd,T

the set of the domain points related to all triangles of 42. If two triangles
T1, T2 ∈ 42 share an edge or a vertex, then Dd,T1

∩ Dd,T2
6= ∅. However,

the continuity of s ∈ Sr
d(42) ensures that its Bernstein-Bézier coefficients

c
(T1)
ijk and c

(T2)
ijk coincide if η

(T1)
ijk = η

(T1)
ijk . Therefore, for each η ∈ Dd,42, where

η = η
(T )
ijk for some T , the coefficient cη = c

(T )
ijk of s associated with it is uniquely

determined, and the set of all coefficients cη, η ∈ Dd,42, completely describes
the spline s. Conversely, given arbitrary real numbers cη, η ∈ Dd,42, there is
a unique spline s ∈ S0

d(42) whose Bernstein-Bézier coefficients are cη.
For r ≥ 1, the coefficients cη of s ∈ Sr

d(42) satisfy the well–known smooth-
ness conditions [10], which are explicit equations involving cη for domain
points η from neighboring triangles. A set M ⊂ Dd,42 is called a minimal
determining set (MDS) for a linear subspace S ⊂ S0

d(42) if setting the co-
efficients of s ∈ S associated with the domain points in M to zero implies
that all the coefficients of s vanish and no proper subset of M exists with the
same property. Thus, for any given values of the coefficients cη, η ∈ M, there
is a unique spline s ∈ S, whose Bernstein-Bézier coefficients corresponding
to the domain points in M are cη.

There are three spline spaces considered in [7], namely S1
3 (42), SS2

6(42)
and RS2

6(42), the latter two being certain subspaces of S2
6 (42). Their com-

mon feature is an MDS defined as

M = Dd,42 ∩
⋃

T∈T
T,

where d = 3 for S1
3 (42), d = 6 for SS2

6(42),RS2
6(42), and T denotes a sub-

set of 42 defined according to the pattern of gray triangles in Figure 1(b).
An important point is that the spline s in any subdomain Ω ⊂ IR2 is deter-
mined by the coefficients associated with domain points in M that lie in or
near Ω. To illustrate this in the case of S1

3 (42), we provide Figure 2 that
shows (a) all domain points that are completely determined by the part of M
contained in four neighboring triangles of T , and (b) the part TΩ of T needed
to determine the spline on a subdomain Ω. For SS2

6(42) and RS2
6(42) the

situation is similar, see [7].

5



(a)

(b)

Figure 2: (a) Domain points shown as dots are completely determined by
the part of M contained in four neighboring triangles of T (black dots).
(b) The gray triangles shown here completely determine the spline on this
subdomain.
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Thus, the second (“extension”) stage of the method amounts to comput-
ing, using the smoothness conditions, the entire Bézier net of the spline s
provided that its coefficients associated with domain points in each T ∈ T
are known.

The goal of the first stage is to compute the Bézier nets of the polynomial
pieces pT = s|T of s on all triangles T ∈ T , using the data (Xi, fi), i =
1, . . . , N . To this end, for each T ∈ T , the data points corresponding to
locations Xi inside a circle ΩT centered at the barycenter of T and with
radius equal to its diameter are used. If, however, these local data are too
few, the radius is suitably increased and, in the opposite case, a grid–type
thinning algorithm is used to reduce their number NT . This process of local
data selection is controlled by two user specified parameters, Mmin and Mmax,
see [7] for further details.

The local approximation method employed in [7] is the discrete least–
squares polynomial fit to the local data using the Bernstein–Bézier basis for
the computations, where the degree of the polynomial (not exceeding the
spline degree d) is selected by an adaptive algorithm. Here, the crucial role
is played by the minimal singular value σmin,q,T of the collocation matrix Mq,T

related to the evaluations of the Bernstein-Bézier basis polynomials of degree
q at the locations Xi of the local data. As shown in [5], keeping σ−1

min,q,T within
a reasonably small bound is important not only for the numerical stability
of the computational process but also for guaranteeing the approximation
power of the least-squares approximation method. Therefore, a user specified
tolerance κP ≥ 1 is introduced, such that a local polynomial approximation of
a certain degree q ≤ d is accepted only if σ−1

min,q,T ≤ κP . Thus, for each T ∈ T ,

the highest degree 0 ≤ q ≤ d is selected such that σ−1
min,q,T is acceptably small.

(Note that σmin,0,T = 1, such that q = 0 may always be accepted.)

3 Local Hybrid Approximation Scheme

The idea of the hybrid method is to enhance the approximation quality of
the local approximations by using linear combinations of polynomials and
radial basis functions.

The local hybrid approximation scheme employs the space

Π2
q = span {pT

1 , . . . , pT
m}, m =

(

q+2
2

)

,

of bivariate polynomials of degree q ≥ 0 and a function φT : R≥0 → R. The
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latter can be any suitably smooth positive definite function or a conditionally
positive definite function of order at most q + 1 on R

2, see [2].
Let ΞT = {X1, . . . ,XNT

} denote the local scattered locations related to
the triangle T with vertices vT

1 ,vT
2 ,vT

3 , and let us assume that NT ≥ m.
The local hybrid approximation gT of the form

gT (·) =
m

∑

j=1

aT
j pT

j (·) +

nT
∑

j=1

bT
j φT (‖ · −YT

j ‖2) (1)

is constructed via the minimization of the `2-norm of the residual on ΞT ,

(

NT
∑

i=1

(fi − gT (Xi))
2
)1/2

, (2)

where 0 ≤ nT ≤ NT − m, and the set of knots YT = {Yj , j = 1, . . . , nT} is
a subset of ΞT .

A priori there is no guarantee that this least-squares minimization prob-
lem has a unique solution, nor that gT has good approximation properties.
Usually, the unique solvability of the interpolation with conditionally positive
definite radial basis functions is enforced by applying additional orthogonality
constraints

nT
∑

j=1

bT
j p(YT

j ) = 0, all p ∈ Π2
q, (3)

on the coefficients bT
j in (1) and assuming that YT contains a Π2

q–unisolvent
subset, see [2]. This approach also extends to the least-squares [18, 21].

We however take a different route in this paper. In order to retain all
nT +

(

q+2
2

)

degrees of freedom, we skip the constraints (3), and consider the
full hybrid space

HT := span
{

pT
1 , . . . , pT

m, φT (‖ · −YT
1 ‖2), . . . , φT (‖ · −YT

nT
‖2)

}

instead of its subspace

RT :=

{

m
∑

j=1

aj pT
j (·) +

nT
∑

j=1

bj φT (‖ · −YT
j ‖2) : (b1, . . . , bnT

) satisfies (3)

}

.

Clearly, the approximation power of HT is at least as good as that of RT

since
E(f,HT )C(T ) ≤ E(f,RT )C(T ),
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where E(f,S)C(T ) is the error of the best approximation of f from a linear
space S,

E(f,S)C(T ) := inf
g∈S

‖f − g‖C(T ).

To ensure that the quality our local discrete least squares approximations is
comparable with that of the local best approximation from HT , we compute
the minimal singular value σmin(CT ) of the collocation matrix CT defined by







pT
1 (X1) . . . pT

m(X1) φT (‖X1 − YT
1 ‖2) . . . φT (‖X1 − YT

nT
‖2)

...
...

...
...

pT
1 (XNT

) . . . pT
m(XNT

) φT (‖XNT
− YT

1 ‖2) . . . φT (‖XNT
− YT

nT
‖2)







and proceed to compute gT only if

σ−1
min(CT ) ≤ κH , (4)

where κH is a user specified tolerance. This also ensures that the considered
least squares problem is uniquely solvable. Note that we prefer avoiding rank
deficient least squares problems since the minimum norm solutions available
in that case do not necessarily maintain the exact reproduction of the ele-
ments of the space (in particular, local polynomial reproduction) vital for
the estimation of the approximation power of the method [5].

Let us explain our motivation for using (4), as opposite to any cheaper
technique avoiding the computation of σmin(CT ) (see e.g. [26]). According to
the estimate given in [5], under assumption that fi = f(Xi), i = 1, . . . , NT ,
for a continuous function f , we have

‖f − gT‖C(T ) ≤
(

1 +
KT

√
NT

σmin(CT )

)

E(f,HT )C(T ), (5)

where

KT := max
{aj},{bj}

∥

∥

∥

∑m
j=1 aj pT

j (·) +
∑nT

j=1 bj φT (‖ · −YT
j ‖2)

∥

∥

∥

C(T )
(

∑m
j=1 |aj|2 +

∑nT

j=1 |bj|2
)1/2

.

Now, for a properly scaled polynomial basis {pT
1 , . . . , pT

m} (for example,
the Bernstein–Bézier basis with respect to T used in our implementation),
and appropriate φT , KT is bounded independently of T . Since also NT ≤
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Mmax, the estimate (5) shows that the size of ‖f − gT‖C(T ) is comparable
with that of the best approximation E(f,HT )C(T ) if (4) holds.

Thus, (4) provides a criterion to accept or reject a given knot set YT

(which uniquely determines the matrix CT ). In order to find a suitable YT ,
it is possible, for example, to start by removing m points from ΞT , check
whether (4) is satisfied for such YT , and, if not, successively remove further
knots until (4) holds. In this paper we take another approach, namely we use
an ascending greedy procedure, i.e. we start with very few knots and keep
adding them at the positions of the highest current error while (4) holds. If
our initial small YT violates (4), then we simply switch to the pure polynomial
local approximation by applying the procedure described in [7] with starting
degree q. Note that a different greedy algorithm of knot selection for global
approximation with radial basis functions has been proposed in [15].

We now formulate our hybrid approximation scheme as Procedure LHA.
Besides the local data set ΞT and the related function values f1, . . . , fNT

, its
input parameters are the three vertices {vT

1 ,vT
2 ,vT

3 } of the triangle T , the
upper bound nmax ≥ 3 of nT = # YT , the degree q and tolerance κP for the
polynomial part and the tolerance κH from (4). Its output is the set of knots
YT with nT = #YT ≤ min{nmax , NT − m} and the related hybrid local
approximation gT , i.e. the coefficients aT

1 , . . . , aT
m and bT

1 , . . . , bT
nT

that define
gT according to (1).

As mentioned above, the procedure is ascending, and we start with just
three knots if NT is big enough. Namely, if NT ≥ m + 3, we select by
symmetry reasons the first three knots to be the three distinct points in
ΞT nearest to the vertices of the triangle. (If else NT < m + 3, then we
compute the local polynomial approximation pT of degree at most q using
the algorithm of [7], and terminate.) We keep adding knots one at a time
while nT < min{nmax , NT − m} and (4) holds. (Should the condition (4)
fail at a step of this while loop, we remove the last inserted knot and go
back to the previous hybrid approximation.) At each step the new candidate
knot is determined by choosing a location Xi ∈ ΞT \ YT where the current
approximation error is the worst.
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Procedure LHA

Input: NT , ΞT = {X1, . . . ,XNT
} , {f1, . . . , fNT

} , {vT
1 ,vT

2 ,vT
3 } , nmax , q ,

κP , κH

Output: YT , gT

1. Set nT = 0 , YT = ∅
2. If NT <

(

q+2
2

)

+ 3
2.1a Set gT = pT (polynomial approximation as in Section 2)

else

2.1b Set nT = 3
2.2b For i=1,2,3

2.2b.1 Set YT = YT ∪ {Xki
} , where

‖Xki
− vT

i ‖2 = minX∈ΞT \YT
‖X − vT

i ‖2

end

2.3b Initialize the current collocation matrix CT

2.3c If σ−1
min(CT ) > κH

2.3c.1a Set nT = 0 , YT = ∅
2.3c.2a Set gT = pT

else

2.3c.1b Set gT = current hybrid approximation
2.3c.2b While nT < min{nmax , NT −

(

q+2
2

)

}
Set errj = |fj − gT (Xj)| , j = 1, . . . , NT

Set i = arg maxj∈ΞT \YT
errj

Set nT = nT + 1 , YT = YT ∪ {Xi}
Update CT

If σ−1
min(CT ) > κH

Set nT = nT − 1 , YT = YT \ {Xi}
Break

end

Set gT = current hybrid approximation
end

end

end
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4 Scattered Data Fitting Method

The above local hybrid approximation scheme is incorporated into the two–
stage scattered data fitting algorithm of [7], replacing the pure polynomial
local approximations originally employed there. We now clarify the remaining
details of the improved scattered data fitting method and give some specific
information related to the numerical tests of Section 5.

By the nature of the direct extension method, the output of the first stage
on each triangle T ∈ T must be a polynomial pT of degree d in Bernstein-
Bézier form (see Section 2). Since the local hybrid approximation gT is given
differently, namely as a sum of the form (1), it has to be converted into a
polynomial by an approximation method.

Specifically, we use for this purpose the discrete least squares with respect
to the evaluations of gT at

(

D+2
2

)

domain points on T related to the space
polynomials of a certain degree D ≥ d. In our numerical experiments we
take D = 2d. This delivers slightly better results than those with D = d
(that corresponds to interpolation). Note that σ−1

min,d,T for the corresponding
collocation matrix is small (2.87 for D = 6 and 21.74 for D = 12), which
ensures that the least squares polynomial of degree d is a good approximation
of gT [5]. Moreover, this matrix is the same for all triangles T ∈ T . Therefore,
the computational cost of the conversion is negligible comparing to the total
cost of the scheme.

Obviously, all triangles T ∈ 42 may be split into eight groups, each of
which is obtained from T by shifting and/or varying the orientation of the
coordinate system (see [7, Figure 6]). Therefore, a way to remove some un-
symmetry pertinent to T is to average the eight different approximations.
Indeed, the numerical results in [7] have shown that such averaging leads to
substantially lower approximation errors and better visual quality approx-
imations, at the expense of nearly eight times higher computational cost.
Since the goal of our numerical tests is to obtain the best possible recon-
structions of the surfaces represented by the given scattered data, we always
apply this averaging procedure in the examples below.

More precisely, in all the experiments reported in Sections 5.1–5.3, the
final approximation is computed using the averaged operator RQav

2 that pro-
duces a C2 continuous spline of total degree d = 6 with respect to the four–
directional mesh. Following the choice made in [7], we use the operator Qav

1 ,
leading to a C1 spline of total degree 3, only for the experiments related to
the data set considered in Section 5.4. (See [7, Section 5] for more details
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about RQav
2 and Qav

1 .) Thus, the comparison with the original pure polyno-
mial method is done relating to the results given in [7] always using the same
method in the second stage.

For the local hybrid approximation method we still have to specify the
local polynomial basis {pT

1 , . . . , pT
m} and the function φT , see Section 3. As

{pT
1 , . . . , pT

m} we always take the basis of bivariate Bernstein polynomials with
respect to the triangle T notable for its superior numerical stability [9].

Among several standard radial basis functions [2] we choose Hardy’s mul-
tiquadric φMQ(r) = −

√
1 + r2 [17], which is C∞ and conditionally positive

definite of order 1, for the majority of our tests, including all tests with real-
world data. Indeed, multiquadric is one of the best known and most often
used radial basis functions. (However, in Section 5.1 we present a set of
experiments with synthetic data using 11 different functions.)

An obvious advantage of the two–stage approach is that the local prob-
lems solved in the first stage are independent from each other, which makes
it easy to adapt the method to the local data distribution. A major example
of such adaptation is the above procedure LHA, where the selection of knots
YT for each local portion of data depends on the local errors. We add an-
other degree of adaptivity to the method in what we use on each T a scaled
version φT of the same radial basis function φ. Thus, we introduce a scaling
parameter δ [23] and determine the function φT to be used in (1) by

φT (r) = cT φ
( r

δdT

)

, (6)

where
dT := max

1≤i,j≤NT

‖Xi − Xj‖2

is the diameter of the local data set ΞT , and cT is a constant. (Clearly, the
size of dT will vary with the local density of the data.) For instance, for
φ = φMQ we set

φT (r) = φT,MQ(r) := −δdT φMQ

( r

δdT

)

=
√

(δdT )2 + r2, (7)

which shows that δ is related to the classical parameter c of the multiquadric
in its form

√
c2 + r2.

Altogether, in addition to the radial basis function φ, our method depends
on several parameters: the grid width hx and height hy, the degree q of the
polynomial part, the inverse minimal singular value tolerances κH and κP ,
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local data selection parameters Mmin, Mmax (see [7, Section 6.1]), the scaling
coefficient δ used in (6), the upper bound nmax on the number of knots nT

in (1), and the parameter D of the uniform grid used for the evaluation of
the local hybrid approximations gT .

Instead of hx and hy we actually use as parameters in our numerical
tests the grid size nx × ny. That is, we compute the minimal rectangle
[a, b] × [c, d] containing all data sites Xi, i = 1, . . . , N , and split it into nxny

equal rectangles by nx − 1 equispaced vertical and ny − 1 horizontal straight
lines. (Thus, hx = (b−a)/nx, hy = (d− c)/ny.) The four–directional mesh is
obtained by drawing in the diagonals of the rectangles. Note that the number
of parameters needed to store the resulting spline is 5nxny +4(nx +ny)+3 in
the C1 case, and 14nxny +12(nx +ny)+6 in the C2 case, see [7, Section 6.1].

In all tests we take D = 2d, as explained above, and nmax = 400. With
this high value for nmax, the number of local knots is in fact restricted only
by the influence of the tolerance κH . Therefore, D and nmax are no more
reported below.

Although φMQ, according to [22], does not require in principle any poly-
nomial term to ensure the non–singularity of the collocation matrix with
respect to any knots, the degree q = 0 polynomial part in (1), that is con-
stant, has proved useful in our tests with this function, especially when almost
flat subareas have to be reconstructed. Therefore we always include a low
degree polynomial term, as described in Section 3. Some other radial basis
functions, such as thin plate spline require q to be at least 1, see Section 5.1.
Our experience is that in most cases q should be kept as small as possible.
One advantage of q = 0 is that the tolerance κP is irrelevant in this case
since the constant polynomial collocation matrix has the minimal singular
value equal to 1 independently of the knot locations. (Note that κP may
be also irrelevant when q > 0 in case that there are no pure polynomial
local approximations, which are only obtained in items 2.1a and 2.3c.2a of
Procedure LHA.)

The grid size nx × ny as well as the parameters Mmin, Mmax, δ and κH

significantly influence the performance of the method. Moreover, our experi-
ence shows that there are no universally best values for them, but rather they
should be always adjusted to the type of data in question. (Similar behaviour
has been observed for the method of [7] with pure polynomial local stage,
where parameter κP played the role of our δ and κH .) On the other hand,
since the same parameter values successfully work for all local approxima-
tions computed for a large data set (e.g. the 621624 points of the Rotterdam
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Port data in Section 5.4), it is clear that these values may be found in practice
by a calibration procedure which would involve experimenting with a small
subset of the data and cross–validation. In this paper, similarly to [7], we
have not tried to formalize such procedures but were always able to find good
parameter values for our tests by a straightforward try–and–error approach.

5 Numerical Results

In what follows, our scattered data fitting method is denoted by (HMQ) when
the multiquadric φT = φT,MQ defined in (7) is used in (1). In Section 5.1
(H) appears also with different indices when we test our method with other
radial basis functions. The scattered data fitting method of [7] relying on
the pure polynomial local approximations is denoted by (P).

We consider below four data sets which were also used in [7]. The lo-
cations {Xi} of the data sites are shown in Figure 3. The aim of the ex-
periments is the accurate and artifact–free recovery of the underlying shape.
The numerical results of each test are reported in a table which contains the
maximum, the mean and the root mean square error calculated either on a
suitable uniform grid for synthetic data (“maxg”, “meang” and “rmsg”, re-
spectively), or at the data sites for the real world data (“max”, “mean” and
“rms”, respectively). The tables also report the average number of knots
used for local radial basis approximation, denoted by naver

T . Since the real
world data sets tested in Sections 5.2–5.4 do not come from a known func-
tion, figures that allow the evaluation of the results by the visual inspection
of the surfaces are also provided.

The numerical tests have been performed on a Sun Ultra 60 workstation
with a 450 MHz processor using our C implementation of the method. Our
program also invokes the routines from the two–stage scattered data fitting
toolbox [8], and, for the computation of the singular value decomposition
of the collocation matrices, from “Numerical Recipes in C” [24]. For the
visualization we have used Matlab 6.

5.1 Franke test function

Our first test deals with a small set of N = 100 data points obtained by
sampling the Franke test function (Figure 4a) at the locations shown in
Figure 3a. This data set is available from [14] as ds3. It is interesting for
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testing the shape recovery capability of the method because the underlying
function is available,

f(x, y) = 3
4
exp

[

− (9x−2)2+(9y−2)2

4

]

+ 3
4
exp

[

− (9x+1)2

49
− (9y+1)

10

]

+ 1
2
exp

[

− (9x−7)2+(9y−3)2

4

]

− 1
5
exp

[

− (9x − 4)2 − (9y − 7)2
]

.

For this data set we consider, in addition to φMQ, several other well-known
radial basis functions, see [2]:

• Inverse multiquadric φIMQ(r) = 1√
1+r2

.

• Gaussian φG(r) = e−r2

.

• Thin plate splines (also called polyharmonic splines) φTP (r) = r2 log r,
φTP3(r) = r3, φTP4(r) = −r4 log r, φTP5(r) = −r5.

• Wendland’s functions φW2(r) = (1 − r)4
+ (4r + 1), φW4(r) = (1 −

r)6
+ (35r2 + 18r + 1), φW6(r) = (1 − r)8

+(32r3 + 25r2 + 8r + 1). These
functions are C2, C4 and C6, respectively.

• Buhmann’s C3 function

φB3(r) =

{

112
45

r9/2 + 16
3
r7/2 − 7r4 − 14

15
r2 + 1

9
, if 0 ≤ r ≤ 1,

0, if r > 1.

The factor cT in (6) is cT = 1/δdT for φIMQ, cT = 2 for φTP and φTP4,
and cT = 1 for the other functions. Thus, in addition to the method (HMQ)
based on the multiquadric, we consider (HIMQ), (HG), (HTP), (HTP3), (HTP4),
(HTP5), (HW2), (HW4), (HW6), and (HB3).

The results are reported in Table 1. To facilitate the comparison, we use
the same C2 method RQav

2 and take nx = ny = 5, Mmax = N = 100 and
Mmin = 16 for all tests. (These are the parameters of the best result with ds3

in [7]). The other parameters q, κH and δ are chosen individually for the basis
functions and are reported in the table. Note that φTP , φTP3 and φTP4, φTP5

are conditionally positive definite of order 2 and 3, respectively. Therefore,
the degree of the polynomial term should be at least 1, respectively 2 for
the methods based on these functions. The parameter κP is not shown since
there have been no pure polynomial local approximations in these tests. The
errors are calculated on the uniform 101 × 101 grid, which is also used for
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the visualization in Figure 4b showing the spline surface obtained with the
method (HMQ). For comparison we included in the table the grid errors for
the same data obtained with the method (P) of [7], see Table 3 in that paper.
Since global methods based on five of the above radial basis functions have
been tested on ds3 in [12], we also included in Table 1 the corresponding
grid errors reported there. The global methods are denoted by (G) with
appropriate indices. Note that (GMQ), (GIMQ) and (GG) do not make use of
any polynomial term, whereas (GTP) and (GTP3) do add a linear polynomial,
and that the errors are computed in [12] on a 33× 33 grid. Clearly, with the
global methods there is only one radial basis approximation involved, and it
simply uses all N = 100 data sites of ds3 as knots {Yj} to interpolate the

data by a sum of the form
∑N

j=1 bj φ(‖ ·−Yj‖2) or p̃+
∑N

j=1 bj φ(‖ ·−Yj‖2),

p̃ ∈ Π2
q, with the orthogonality conditions

∑N
j=1 bj p(Yj) = 0 for all p ∈ Π2

q.

method q κH δ maxg meang rmsg naver
T

(HMQ) 0 105 0.4 1.6 10−2 1.9 10−3 3.0 10−3 21.1
(HIMQ) 0 104 0.5 1.5 10−2 2.0 10−3 3.1 10−3 21.3
(HG) 0 104 0.4 1.9 10−2 2.2 10−3 3.5 10−3 19.3
(HTP) 1 105 2.0 5.7 10−2 7.8 10−3 1.3 10−2 20.7
(HTP3) 1 105 2.0 4.7 10−2 4.5 10−3 7.5 10−3 20.3
(HTP4) 2 105 2.0 3.0 10−2 3.4 10−3 5.5 10−3 14.9
(HTP5) 2 106 2.0 2.8 10−2 3.4 10−3 5.2 10−3 13.4
(HW2) 0 104 2.0 3.9 10−2 4.1 10−3 7.1 10−3 22.7
(HB3) 0 105 2.0 3.3 10−2 3.6 10−3 6.0 10−3 22.4
(HW4) 0 104 2.0 2.1 10−2 2.1 10−3 3.6 10−3 21.2
(HW6) 0 105 2.0 1.6 10−2 1.9 10−3 3.0 10−3 20.9
(P) 6 3.8 10−2 5.2 10−3 7.6 10−3

(GMQ) 2.3 10−2 1.8 10−3 3.6 10−3

(GIMQ) 2.5 10−2 2.8 10−3 5.2 10−3

(GG) 6.2 10−2 6.0 10−3 1.1 10−2

(GTP) 1 5.2 10−2 5.3 10−3 9.5 10−3

(GTP3) 1 2.5 10−2 3.1 10−3 5.8 10−3

Table 1: Franke function test (ds3 data set).

The first conclusion we can made from the table is that our method
performs very well for this standard data set, whatever the function φ is.
In particular, the errors are in most cases better than those with (P), and
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comparable to the best results reported in [12]. Note that apart from (GMQ)–
(GTP3) there are 24 other scattered data fitting methods tested on ds3 in [12].
The results range from maxg = 4.9 10−2, meang = 5.4 10−3, rmsg = 9.4 10−3

for the minimum norm network method by Nielson to maxg = 2.7 10−1,
meang = 4.2 10−2, rmsg = 6.2 10−2 for the Shepard method. Another
comparative study of scattered data fitting methods has been performed
recently in [25]. Here, 10 methods published as ACM algorithms are tested
on various synthetic data sets, including ds3. The best error on this data
reported in [25] corresponds to rmsg = 6.8 10−3, which confirms once again
that the results shown in Table 1 belong to the best ones available for ds3.

Clearly, the differences in errors obtained with various radial basis func-
tions in Table 1 cannot be considered as sufficient evidence to prefer one
function over another. Nevertheless, based on these results and motivated
by the practical need to keep the number of experiments reasonable, we have
picked multiquadric φMQ for our subsequent tests. Figure 4 confirms the high
visual quality of the spline surface obtained with (HMQ).

Table 2 presents the results of tests with random data. More precisely,
for each N = 102, 103, 104, N points in [0, 1]2 are selected randomly (with
uniform distribution), and the data is created by evaluating the Franke func-
tion at these sites. Then the spline approximation is computed using the
method (HMQ) with q = 0. This test is repeated 10 times with different
random data, and the average errors and knot numbers are reported in the
table. For N = 102 we use exactly the same parameters as above for the 100
point set ds3. For the larger data sets we increase nx = ny up to the closest
integer to

√
N/2 and take Mmax = 400. Interestingly, Mmin, κH and δ had

to be adjusted, too, to achieve a better performance, see the table for the
values that we use.

N nx Mmin κH δ maxg meang rmsg naver
T

102 5 16 105 0.4 4.60 10−2 3.98 10−3 7.46 10−3 19
103 16 40 1012 1.0 1.69 10−4 1.53 10−6 6.47 10−6 47
104 50 40 1015 1.6 4.64 10−7 5.62 10−9 1.51 10−8 48

Table 2: Franke function test (random data).

The results in Table 2 compare favorably to analogous tests with (P)
reported in [7, Table 1] and three other methods reported in [20, Table 4].
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5.2 Black Forest

The second test relates to a set of 15885 points (the “black forest” data
set of [7]) representing a terrain in the neighborhood of Freiburg, Germany.
The difference between the highest and the lowest point is ≈ 1214 m. The
respective locations are shown in Figure 3b where we also indicate with a box
a difficult area with varying point density used to check the visual quality of
the surface.

Figure 5 shows the C2 approximating surface obtained with the hybrid
scheme (HMQ) based on multiquadrics using nx = ny = 80 (i.e. the same
grid size as used in [7, Fig. 16c]). Figures 5a and 5b (both related to the
subregion indicated in Figure 3b) correspond to the tests reported in the first
and second rows of Table 3, respectively.

Figure 5 has been obtained using the evaluations of the spline on the
1201×1201 grid (this is the same grid used to evaluate the errors in Table 3),
while Figures 6a and 6b rely on the 421×421 evaluation grid in the subregion.

Table 3 presents the parameters of each test, as well as the data errors
max, mean and rms, average number of knots naver

T and the computation
CPU time t in seconds. As for the Franke function test, we take ny = nx,
Mmax = 100 and do not provide κP since there is no need in this tolerance in
the case q = 0. Moreover, there have been no pure polynomial (i.e., constant)
local approximations in these tests. For the ease of comparison, Table 3 also
includes the errors, the computation time and the values of nx and Mmin for
the test with the method (P) reported in [7].

nx κH Mmin δ max mean rms naver
T t (sec)

(HMQ) 80 104 12 0.3 32.0 m 1.39 m 2.17 m 12.2 137
(HMQ) 160 105 16 0.3 15.7 m 0.29 m 0.60 m 20.0 2050
(P) 80 3 30.6 m 2.56 m 3.57 m 9.8

Table 3: Black forest test.

According to these results, by using the local hybrid approximation scheme
for the same spline grid (nx = ny = 80), we achieve essential reduction of the
mean and root mean square errors at the data, while maintaining the high
quality of the surface (Figure 5a). Moreover, the errors reduce significantly
if we double nx and ny, obtaining very moderate oscillations in the difficult
areas of low data density (Figure 5b). On the other hand, the last column of
the table shows clearly that this significant improvement is associated with
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a higher computational cost. In the following subsection we will see however
that this is not always the case.

5.3 Glacier

We consider next the “glacier” data set of 8345 points representing digitized
contours of a glacier, available from [14] as vol87. The locations of the data
sites are shown in Figure 3c.

The results of our tests are presented in Table 4 and Figures 7–9. For the
sake of comparison, Table 4 and Figures 8–9 also include results obtained
with the method (P) in [7].

Since the domain is not square, we use non–equal grid parameters in x and
y direction such that ny = 1.2 nx. (Thus, only nx is reported in the table).
The visualization is done by using evaluations of the C2 spline surfaces on a
301× 361 grid. Following [7], we take Mmax = 160 in this test. Since we use
q = 0, parameter κP is not relevant.

We compute three C2 spline approximations using the method (HMQ), as
usual. We use the same value of scaling parameter δ = 0.4 in all three cases.
For the first of these tests we take nx = 20 and Mmin = 60, as in [7] and
achieve about 20% improvement in the data errors comparing to the method
(P), while the visual quality remains high, see the first row of Table 4, and
Figures 7, 8a and 9a. The computation cost is however about 4 times higher
than for (P). Therefore, in our second test we change the parameters Mmin

and κH to lower values and are still able to obtain a good approximation,
with the computation cost reduced to that of the polynomial method, see
the second row of Table 4, and Figures 8b and 9b. This reduction of the
computation cost is achieved obviously because the number of the knots
used in local approximations (naver

T in Table 4) significantly drops. As in
the case of “black forest,” the surface remains almost artifact–free when we
double the spline grid to nx = 40, thus significantly reducing the errors at
the data, see the third row of Table 4, and Figures 8c and 9c.

5.4 Rotterdam Port

Finally, we consider the “Rotterdam Port” data set provided to the authors
of [7] by Quality Positioning Services (Zeist, The Netherlands). The original
data consists of 634604 raw measurements from the bottom of the Rotterdam
harbor produced by the density multibeam echosounder and recorded using
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nx κH Mmin δ max mean rms naver
T t (sec)

(HMQ) 20 105 60 0.4 15.6 m 1.57 m 2.26 m 14.9 65.9
(HMQ) 20 104 20 0.4 17.9 m 1.71 m 2.47 m 8.9 15.1
(HMQ) 40 105 20 0.4 9.9 m 0.57 m 0.92 m 12.4 61.6
(P) 20 60 18.7 m 1.95 m 2.78 m 15.9

Table 4: Glacier test.

the QINSy software. The processing of this data reported in [7, Section 6.6]
involves two steps, where the method (P) is applied twice with different
parameters values. The goal of the first step is data cleaning, where outliers
are removed and noise reduced. In this paper we skip this first step and
work directly with the “cleaned” data obtained in [7], which is a subset of
the original data and consists of 621624 points.

As in [7], we use for this data the C1 spline method Qav
1 in the second

stage. The parameters of both (HMQ) used here and (P) used in [7] are
reported in Table 5, whereas the results are shown in Table 6 and Figures 10
and 11. Note that for this data the value q = 1 turned out to be advantageous,
which was not the case in any of the previous tests, where we always used
q = 0 with (HMQ). Moreover, some 9.9% of local approximations, namely
13579 out of 136840, are pure polynomial, of whose 10935 are linear and 2644
are constant.

method nx × ny Mmin Mmax q κP κH δ

(HMQ) 100 × 281 3 100 1 100 2 · 104 0.4
(P) 100 × 281 3 49 3 5

Table 5: Rotterdam Port test: parameters.

method max mean rms naver
T t (sec)

(HMQ) 92.5 cm 5.46 cm 7.46 cm 5.4 525
(P) 107.7 cm 5.76 cm 7.84 cm 115

Table 6: Rotterdam Port test: results.

Figure 10 presents a view of the full spline surface obtained with (HMQ).
Since it is hardly distinguishable from the corresponding figure [7, Figure 17c]
for the method (P), we also include Figure 11, where zooms into identical

21



subareas of both surfaces are shown for comparison. The grid used for the
visualization is 601 × 1630.

The presented results show that, even if the computational time is almost
multiplied by five, the hybrid approach is capable to reduce the errors even in
this test case, while keeping the same visual quality obtained with the original
approach considered in [7]. Note that the accuracy of the measurements is
estimated at between 5 and 10 cm, and so there is not much room for the
improvement of, say, the rms error of 7.46 cm that we have for (HMQ).
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Figure 3: (a) The locations of the 100 data of ds3 used for the Franke function
test. (b) The locations of the 15885 data used for the “black forest” test.
(c) The locations of the 8345 data used for the “glacier” test. (d) Typical
distribution of the locations of the 621624 data used for the “Rotterdam
Port” test. (About 6% of the domain covered by the data is shown.)
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(a)

(b)

Figure 4: Franke function test: (a) The exact Franke function. (b) The C2

spline appoximation obtained with (HMQ).
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Figure 5: Black forest test: The C2 spline approximation with nx = ny = 80
obtained with the hybrid scheme (HMQ).
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(a)

(b)

Figure 6: Black forest test: zoom into the subarea indicated with a box in
Figure 3b. (a) Approximation with nx = ny = 80. (b) Approximation with
nx = ny = 160.
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Figure 7: Glacier test: The C2 spline approximation with nx = 20, ny = 24
obtained with the hybrid scheme (HMQ).
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(a) (b)

(c) (d)

Figure 8: Glacier test: contours. The thick lines consist of the dots repre-
senting the data locations, compare Figure 3c, whereas the thin lines are the
contours derived from the approximating surface at precisely the heights of
the data. (a) (HMQ) with nx = 20, ny = 24, Mmin = 60. (b) (HMQ) with
nx = 20, ny = 24, Mmin = 20. (c) (HMQ) with nx = 40, ny = 48, Mmin = 20.
(d) (P) with nx = 20, ny = 24, Mmin = 60 [7].
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(a) (b)

(c) (d)

Figure 9: Glacier test: zooms to a subregion. (a) Method (HMQ) with nx =
20, ny = 24, Mmin = 60. (b) Method (HMQ) with nx = 20, ny = 24, Mmin =
20. (c) Method (HMQ) with nx = 40, ny = 48, Mmin = 20. (d) Method (P)
with nx = 20, ny = 24, Mmin = 60 [7].
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Figure 10: Rotterdam Port test: The C1 spline approximation obtained with
the hybrid method (HMQ).
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(a)

(b)

Figure 11: Rotterdam Port test: zoom. (a) Method (HMQ). (b) Method (P).
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