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Abstract

We present an implementation of Böhmer’s finite element method

for fully nonlinear elliptic partial differential equations on convex polyg-

onal domains, based on a modified Argyris element and Bernstein-

Bézier techniques. Our numerical experiments for several test prob-

lems, involving the classical Monge-Ampère equation and an uncon-

ditionally elliptic equation, confirm the convergence and error bounds

predicted by Böhmer’s theoretical results.

1 Introduction

Numerical solution of fully nonlinear elliptic partial differential equations is a
topic of intensive research and great practical interest, see [7]. The motivation
behind this interest is the presence of these equations in different fields of
science and engineering including differential geometry [2], fluid mechanics
[18] and optimal transportation [5].

Several numerical methods have been recently proposed in the literature
for the fully nonlinear equations, in particular finite difference [13, 20] and
finite element type methods [6, 14, 15, 8, 3, 4, 19]. The most of these methods
are restricted to the equations of Monge-Ampère type, such as the Monge-
Ampère equation, the equation of Gaussian curvature and Pucci’s equation.

Böhmer’s method [6, 7] allows solving the Dirichlet problem for any fully
nonlinear elliptic equations of second order. It is based on a finite element dis-
cretisation of the linearised elliptic equations, with C1 finite element spaces
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that admit a stable splitting into the subspace satisfying zero boundary con-
ditions and its complement. This method does not require any variational
formulation of the fully nonlinear equation. Full theoretical justification of
the method is given in [6, 7], including a proof of convergence and error
bounds. However, no numerical results have been provided.

This paper presents the first implementation of Böhmer’s method based
on a modified Argyris finite element space with a stable splitting developed
in [11, 12]. Our construction makes use of the Bernstein-Bézier techniques for
piecewise polynomials [17, 21]. These techniques are widespread in geometric
modelling, and currently gain more attention in the finite element method be-
cause of a number of desirable properties, in particular optimal complexity
of the element system matrix assembly [1]. Note that C1 conforming dis-
cretisations based on a variational formulation of either the Monge-Ampère
equation or a fouth order quasilinear equation resulting from a singular per-
turbation of the Monge-Ampère equation have been recently explored in
[3, 4, 15]. Neither of these discretisations is equivalent to Böhmer’s method.
In particular, the spline element method of [3, 4] uses Lagrange multipliers
to enforce inter-element smoothness and boundary conditions by solving a
saddle point problem, rather than relying on a stable splitting of a C1 finite
element space.

Our numerical experiments include several standard test problems for
the Monge-Ampère equation on a square, an example for a non-rectangular
convex polygonal domain, and an unconditionally elliptic equation. The
numerical results confirm the theoretical error bounds given in [6, 7].

The paper is organised as follows. Section 2 is devoted to the formulation
of Böhmer’s method. In Section 3 we recall our construction of the modified
Argyris space [12] and provide the details of the numerical implementation of
a stable local basis admitting a stable splitting. In Section 4 we discuss the
implementation of Böhmer’s method, including the assembly of the system
matrix for the linearised elliptic equations arising in each step of Newton
iteration. Finally, Section 5 is devoted to the numerical experiments.

2 Böhmer’s Method for Elliptic Equations

2.1 Fully Nonlinear Elliptic Operators

Let Ω be a bounded domain in R
n and let G be a second order differential

operator of the form
G(u) = G̃(·, u,∇u,∇2u),

where G̃ is a real valued function defined on a domain Ω̃ × Γ such that

Ω ⊂ Ω̃ ⊂ R
n and Γ ⊂ R × R

n × R
n×n,
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and ∇u,∇2u denote the gradient and the Hessian of u, respectively. The
points in Ω̃ × Γ are denoted by w = (x, z, p, r), with x ∈ Ω̃, z ∈ R, p =
[pi]

n
i=1 ∈ R

n, r = [rij]
n
i,j=1 ∈ R

n×n, to indicate the product structure of this
set. We denote by D(G) the domain of the operator G.

The operator G is said to be elliptic in a subset Γ̃ ⊂ Ω̃ × Γ if the matrix

[ ∂ eG
∂rij

(w)]ni,j=1 is well defined and positive definite for all w ∈ Γ̃ [7, 16]. If G̃

is a linear function of (z, p, r) for each fixed x, then G is a linear differential

operator. Under suitable restrictions on G̃, classes of quasilinear and semi-
linear differential operators are obtained [7, p. 80], but in general G may be
fully nonlinear.

In the neighborhood of a fixed function û ∈ D(G) the linear elliptic
operator G′(û) is defined by

G′(û)u =
∂G̃

∂z
(ŵ)u +

n∑

i=1

∂G̃

∂pi

(ŵ)∂iu +
n∑

i,j=1

∂G̃

∂rij

(ŵ)∂i∂ju, (1)

where ŵ = (x, û(x),∇û(x),∇2û(x)) is a function of x ∈ Ω, and ∂i denotes
the partial derivative with respect to the i-th variable. Note that G′(û) is
the Fréchet derivative of G if G is Fréchet differentiable at û.

Many nonlinear elliptic operators and corresponding equations G(u) = 0
are important for applications. A standard example of a fully nonlinear
equation is the Monge-Ampère equation on Ω ⊂ R

2, given by

GMA(u) := det(∇2u) − f(x) = 0, f(x) > 0 for x ∈ Ω.

We consider the Dirichlet problem for the operator G: Find u such that

G(u) = 0, x ∈ Ω, (2)

u = φ, x ∈ ∂Ω, (3)

where φ is a continuous function defined on ∂Ω. Under certain assumptions,
including the exterior sphere condition for ∂Ω and sufficient smoothness of
G̃, this problem has a unique solution u ∈ C2(Ω)∩C(Ω) [16, Theorem 17.17].

Note that the Monge-Ampère operator GMA is elliptic in subsets Γ̃ satisfying

Γ̃ ⊂ Ω̃ × R × R
n × {r ∈ R

n×n : r is positive definite}.

Therefore there exists a unique convex solution of GMA(u) = 0, whereas it
is known that the Monge-Ampère equation has another, concave solution [9,
Chapter 4].
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2.2 Spline Spaces and Stable Splitting

As usual in the finite element method, the discretisation of the Dirichlet
problem is done with the help of spaces of piecewise polynomial functions
(splines). Let △ be a triangulation of a polyhedral domain Ω ⊂ R

n, that
is a partition of Ω into simplices such that the intersection of every pair of
simplices is either empty or a common face. The space of multivariate splines
of degree d and smoothness r is defined by

Sr
d(△) = {s ∈ Cr(Ω) : s|T ∈ Pd for all simplices T in △} , (4)

where d > r ≥ 0 and Pd is the space of polynomials of total degree d in
n variables. Recall that the star of a vertex v of △, denoted by star(v) =
star1(v), is the union of all simplices T ∈ △ attached to v. We define starj(v),
j ≥ 2, inductively as the union of the stars of all vertices of △ contained in
starj−1(v), and star(T ) as the union of the stars of all vertices of the simplex
T .

Let {△h}h∈H be a family of triangulations of Ω, where h is the maximum
edge length in △h. The triangulations in the family are said to be quasi-
uniform if there is an absolute constant c > 0 such that ρT ≥ ch for all
T ∈ △h, where ρT denotes the radius of the inscribed sphere of the simplex
T .

Let Sh ⊂ Sr
d(△h) be a linear space with basis s1, . . . , sN and dual linear

functionals λ1, . . . , λN : Sh → R such that λisj = δij . This basis is stable
and local if there are three constants m ∈ N and C1, C2 > 0 independent of
h such that (a) supp sk is contained in starm(v) for some vertex v of △h, (b)
‖sk‖L∞(Ω) ≤ C1, k = 1, . . . , N , and (c) |λks| ≤ C2‖s‖L∞(supp sk), k = 1, . . . , N ,
for all s ∈ Sh, see [10, 11] and [7, Section 4.2.6].

To handle the Dirichlet boundary condition (3), the following subspace
of Sh is important:

Sh
0 :=

{
s ∈ Sh : s|∂Ω = 0

}
.

We say that Sh admits a stable splitting

Sh = Sh
0 + Sh

b ,

if there is a stable local basis {s1, . . . , sN} for Sh that can be split into two
parts

{s1, . . . , sN} = {s1, . . . , sN0
} ∪ {sN0+1, . . . , sN},

where {s1, . . . , sN0
} and {sN0+1, . . . , sN} are bases for the subspaces Sh

0 and
Sh

b , respectively. Note that the space Sh
b is not uniquely defined by the pair

Sh, Sh
0 . It was shown in [11, 12] (see also [7, Section 4.2.6]) how the stable

splitting can be achieved for a modified Argyris finite element space.
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2.3 Böhmer’s Method

Let u = û be the solution of (2)–(3). According to [6, 7], its approximation
ûh ≈ û is sought as a solution of the following problem: Find ûh ∈ Sh such
that

(G(ûh), vh)L2(Ω) = 0 ∀vh ∈ Sh
0 , and (5)

(ûh, vh
b )L2(∂Ω) = (φ, vh

b )L2(∂Ω) ∀vh
b ∈ Sh

b , (6)

where (·, ·) denotes the inner products in the respective Hilbert spaces. Since
Sh

0 and Sh
b are finite dimensional linear spaces, the problem (5)–(6) is equiv-

alent to a system of algebraic equations with respect to the coefficients of ûh

in a basis of Sh.

Theorem 1 ([7, Theorem 5.2]) Let Ω be a bounded convex polyhedral do-
main, and let G : D(G) → L2(Ω), with D(G) ⊂ H2(Ω), satisfy Con-
dition H of [7, Section 5.2.3]. Assume that G is continuously differen-
tiable in the neighbourhood of an isolated solution û of (2)–(3), such that
û ∈ D(G) ∩ Hℓ(Ω), ℓ > 2, and G′(û) : D(G) ∩ H1

0 (Ω) → L2(Ω) is bound-
edly invertible. Furthermore, assume that the spline spaces Sh ⊂ S1

d(△h),
d ≥ ℓ − 1, on quasi-uniform triangulations △h possess stable local bases and
stable splitting Sh = Sh

0 + Sh
b , and include polynomials of degree ℓ− 1. Then

the problem (5)–(6) has a unique solution ûh ∈ Sh as soon as the maximum
edge length h is sufficiently small. Moreover,

‖û − ûh‖H2(Ω) ≤ Chℓ−2‖û‖Hℓ(Ω).

Note that, in particular, all conditions of Theorem 1 are satisfied by the
Monge-Ampère operators, where D(GMA) = C2(Ω), see [7, Example 3.26].

The nonlinear problem (5)–(6) can be solved iteratively by a Newton
method as suggested in [6], where the initial guess uh

0 ∈ Sh satisfies the
boundary condition

(uh
0 , v

h
b )L2(∂Ω) = (φ, vh

b )L2(∂Ω) ∀vh
b ∈ Sh

b ,

and the sequence of approximations {uh
k}k∈N of ûh is generated by

uh
k+1 = uh

k − wh, k = 0, 1, . . . ,

with wh ∈ Sh
0 being the solution of the linear elliptic problem:

Find wh ∈ Sh
0 such that (G′(uh

k)w
h, vh)L2(Ω) = (G(uh

k), v
h)L2(Ω) ∀vh ∈ Sh

0 .

Clearly, wh can be found by using the standard finite element method. Under
some additional assumptions on G, it is proved in [6, Theorem 9.1] that uh

i

converges to ûh quadratically. Note that in the case when G(u) is only
conditionally elliptic (e.g. elliptic only for a convex u for Monge-Ampère
equation) the ellipticity of the above linear problem is only guaranteed for
uh

k sufficiently close to the exact solution û.
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3 C1 Finite Elements with Stable Splitting

3.1 Bernstein-Bézier Techniques

This section is devoted to the key concepts of the Bernstein-Bézier techniques
we rely upon in our implementation of the finite element spaces suitable for
Böhmer’s method. A comprehensive treatment of these techniques can be
found in [17]. We restrict to the case of two variables.

Let Ω ⊂ R
2 be a polygonal domain and △ a triangulation of Ω. For a

given d ≥ 1, let Dd,△ :=
⋃

T∈△ Dd,T be the set of domain points, where

Dd,T :=

{
ξijk =

iv1 + jv2 + kv3

d

}

i+j+k=d

for each triangle T := 〈v1, v2, v3〉 in △. We will use the following terminology
for certain subsets of Dd,T . We refer to the set

Rn(v) := {ξijk ∈ Dd,△ : i = d − n} , 0 ≤ n ≤ d,

of domain points as the ring of radius n around the vertex v and refer to the
set

Dn(v) :=

n⋃

m=0

Rm(v)

as the disk of radius n around the vertex v.
Recall that every v ∈ R

2 can be uniquely represented in the form

v =

3∑

i=1

bivi,

3∑

i=1

bi = 1,

where the components of the triplet (b1, b2, b3) are called the barycentric coor-
dinates of v relative to the triangle T := 〈v1, v2, v3〉. Barycentric coordinates
are linear functions of v, and the functions

Bd
ijk(v) :=

d!

i!j!k!
bi
1b

j
2b

k
3, i + j + k = d,

are the Bernstein-Bézier basis polynomials of degree d associated with trian-
gle T . Every polynomial p of total degree d can be written uniquely as

p =
∑

i+j+k=d

cijkB
d
ijk,

where cijk are the Bézier coefficients of p. For each s ∈ S0
d(△) and ξ = ξijk ∈

Dd,△ we denote by cξ the coefficient cijk of the restriction of s to any triangle
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T ∈ △ containing ξ. (Because of the continuity of s the coefficient cξ does
not depend on the particular choice of such triangle.)

A key concept for dealing with spline spaces in Bernstein-Bézier form is
that of a minimal determining set. The set M ⊂ Dd,△ is a determining set
for a linear space S ⊂ S0

d(△) if

s ∈ S and cξ = 0 ∀ξ ∈ M ⇒ s = 0,

and M is a minimal determining set (MDS) for the space S if there is no
smaller determining set. Then dim S equals the cardinality #{M} of M .

Usually subspaces S ⊂ S0
d(△) are defined with the help of certain smooth-

ness conditions which can be explicitly written down as linear equations in-
volving the coefficients cξ, ξ ∈ Dd,△. For a given minimal determining set
M for S, if we assign values to the coefficients {cξ}ξ∈M

, then the remaining
coefficients cη, η ∈ Dd,△\M of a spline s ∈ S can be computed using the
smoothness conditions. Hence, an MDS M can be used to construct the
M-basis {sξ}ξ∈M for S by requiring that the Bézier coefficients cη, η ∈ M ,
of sξ satisfy cξ = 1 and cη = 0 for all η ∈ M \ {ξ}.

We now introduce the concept of a stable and local MDS, which applies
to algorithms of constructing an MDS for any triangulation of a given family,
for example for all triangulations in two variables with a given lower bound
on the minimum angle of the triangles. Let

Γη := {ξ ∈ M : cη depends on cξ} , η ∈ Dd,△\M,

where we say that cη depends on cξ, ξ ∈ M , if the value of cη for a spline
s ∈ S is changed when we change the value of cξ. This simply means that
the coefficient cη of the basis spline sξ is not zero. A minimal determining set
M for a space S is said to be local if there exists an absolute integer constant
ℓ not depending on △ such that

Γη ⊂ starℓ(Tη) ∀η ∈ Dd,△\M,

where Tη is a triangle containing η. Moreover, M is called stable if there
exists a constant K which may depend only on d, ℓ and the smallest angle
θ△ in the triangulation △ such that

|cη| ≤ K max
ξ∈Γη

|cξ| ∀η ∈ Dd,△\M.

If M is a stable local MDS, then the corresponding M-basis of S is stable
and local in the sense of Section 2.2. A stable splitting of this basis can
often be achieved by an appropriate splitting of the MDS, which leads to the
following definition.
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Definition 2 Assume that the space S ⊂ S0
d(△) has a stable local MDS M

and let
S0 := {s ∈ S : s|∂Ω = 0} . (7)

The MDS M is said to admit a stable splitting if M is the disjoint union of
two subsets M0, Mb ⊂ M such that

S0 = {s ∈ S : cξ = 0 ∀ξ ∈ Mb} (8)

and M0 and Mb are stable local MDS for the spaces S0 and Sb, respectively,
where

Sb := {s ∈ S : cξ = 0 ∀ξ ∈ M0} . (9)

Note that if M is a stable local MDS, and M = M0 ∪ Mb is a disjoint
union, then it is a stable splitting as soon as (8) holds.

If M admits a stable splitting, then S = S0 +Sb and it is easy to see that

{sξ}ξ∈M = {sξ}ξ∈M0
∪ {sξ}ξ∈Mb

is a stable splitting of the stable local basis {sξ}ξ∈M .

3.2 Modified Argyris Space

Recall that the superspline spaces Sr,ρ
d (△), r ≤ ρ ≤ d, of Sr

d(△) are defined
as

Sr,ρ
d (△) = { s ∈ Sr

d(△) : s ∈ Cρ(v) ∀v ∈ V } , (10)

where V is the set of all vertices of △.
The Argyris finite element space is obtained by choosing d = 5, r = 1

and ρ = 2 in (10). Now for each v ∈ V , let Tv be one of the triangles sharing
the vertex v and let Mv := D2(v) ∩ Tv. For each edge e of the triangulation
△, let Te := 〈v1, v2, v3〉 be one of the triangles sharing the edge e := 〈v2, v3〉
and let Me :=

{
ξTe

122

}
. Then from [17, Theorem 6.1] we have

Theorem 3 The dimension of the Argyris finite element space is given by
dim S1,2

5 (△) = 6#{V } + #{E}, and

M =
⋃

v∈V

Mv ∪
⋃

e∈E

Me (11)

is a stable local minimal determining set for S1,2
5 (△).

The modified Argyris space S̃ [11, 12] is given by

S̃ :=
{
s ∈ S1

5(△) : s ∈ C2(v), for all interior vertices v of △
}

. (12)
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We now introduce some further notation that will help us to describe a stable
local MDS for S̃. Let VI and VB denote the sets of interior and boundary
vertices of △, respectively, and let EI and EB represent the sets of interior
and boundary edges, such that V = VI ∪VB, E = EI ∪EB. Let, furthermore,
Ev = {e1, e2, · · · , en} denote all edges of △ emanating from a vertex v ∈ V ,
in counterclockwise order. For each ei, let ξi be the (unique) domain point
in R2(v)∩ ei, i = 1, . . . , n. For each v ∈ V , we choose a triangle Tv as above,
where we assume in addition that Tv shares an edge with the boundary of Ω
if v ∈ VB. We define Mv and Me as above, and set

M̃v := Mv ∪ {ξ1, ξ2, · · · , ξn}.

Theorem 4 ([12, Theorem 4]) The dimension of the modified Argyris space
S̃ is given by dim S̃ = 6#VI + #E +

∑
v∈VB

(4 + #Ev), and

M̃ :=
⋃

v∈VI

Mv ∪
⋃

e∈E

Me ∪
⋃

v∈VB

M̃v. (13)

is a stable local MDS for S̃.

We now split M into two disjoint subsets M̃0 and M̃b as follows. Let

(
⋃

v∈VI

Mv ∪
⋃

e∈E

Me

)
⊂ M̃0, (14)

and let all points of M̃ lying on the boundary be in M̃b. Also let

{R2(v) ∩ M̃v}\{e1, en} ∈ M̃0, for each v ∈ VB.

Now only one point in R1(v)∩ M̃v, for each v ∈ VB, is not assigned to either
M̃0 or M̃b. We denote this point by ξv. Where ξv belongs depends on the
geometry of the boundary edges attached to v.

• If boundary edges attached to v are non-collinear, then ξv ∈ M̃b.

• If boundary edges attached to v are collinear, then ξv ∈ M̃0.

Now we are in position to formulate the theorem about stable splitting for
the modified Argyris space.

Theorem 5 ([12]) M̃ = M̃0 ∪ M̃b is the stable splitting of the stable local
MDS M̃ for S̃.

Stable splitting of an MDS is impossible for the standard Argyris space
in general, as the following result shows.
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Theorem 6 ([12]) No MDS for the Argyris space can be stably split on
arbitrary triangulations.

As we will see in the next section, a key step in the implementation of the
finite element stiffness matrices using Bernstein-Bézier techniques is the com-
putation of the Bézier coefficients of the basis splines {sξ}ξ∈M corresponding
to an MDS M . We therefore conclude this section by providing Algorithm 1
that gives all details of this computation for the basis splines of the modified
Argyris space.

4 Implementation of Böhmer’s Method

In this section we describe in detail our implementation of Böhmer’s method
using Bernstein-Bézier techniques. We study the numerical approximation
of Dirichlet problem (2)-(3) for a fully nonlinear equation of second order.

Discretisation

Recall that △h is a quasi-uniform triangulation of a convex polygonal domain
Ω ⊂ R

2. As discussed in Section 2, solving the nonlinear problem (2)-(3)
by Böhmer’s method amounts to running a Newton-Kantorovich iteration
scheme to get a sequence

{
uh

k

}
k∈Z+

of approximations of û generated by

uh
k+1 = uh

k − wh, k = 0, 1, . . . , (17)

where wh ∈ Sh
0 is the solution of the linear elliptic problem: Find wh ∈ Sh

0

such that
(G′(uh

k)w
h, vh)L2(Ω) = (G(uh

k), v
h)L2(Ω) ∀vh ∈ Sh

0 , (18)

where G′ is the linearisation (1) of the nonlinear operator G. We solve this
linear equation by using the standard Galerkin finite element method with
the modified Argyris space S̃h on △h as an approximating space, with the
stable splitting S̃h = S̃h

0 + S̃h
b according to Theorem 5.

After a standard transformation to the weak form, (18) is translated into
the following problem: Find wh ∈ S̃h

0 such that for all vh ∈ S̃h
0 ,

∫

Ω

∇wh · A∇vhdx +

∫

Ω

vhb · ∇whdx +

∫

Ω

cwhvhdx =

∫

Ω

fvhdx, (19)

where A =
[

∂ eG
∂rij

(wh
k)
]2

i,j=1
, b =

[
∂ eG
∂pi

(wh
k)
]2

i=1
, f = G(uh

k) and c = ∂ eG
∂z

(wh
k).

If (s1, . . . , sN0
) is a basis of S̃h

0 , then, as usual in the finite element method,
(19) results in the linear system

(S + Bt + M)a = L (20)

10



Algorithm 1 Compute Bézier coefficients of a basis spline sξ, ξ ∈ M̃ .

Require: Given ξ, initialize {cη : η ∈ D5,△} by zeros and set cξ = 1. Recall
that Te is triangle sharing the edge e ∈ E. Let T̃e be the other triangle
sharing the edge e if e ∈ EI .

Ensure: Compute cη ∀η ∈ D△\M̃.
1. if ξ ∈ Mv, v ∈ VI then
2. Find triangles {Tκ}k

κ=1 attached to vertex v, arranged in anti-clockwise
order, with T1 := Tv.

3. Move anti-clockwise by computing cν , ν ∈ D2(v) ∩ Tκ+1 from known
coefficients cη, η ∈ D2(v) ∩ Tκ, κ = 1, · · · , k − 1, using C1 and C2

smoothness conditions [17, Lemma 2.30]. We write these smoothness
conditions explicitly. Let T1 := 〈v, v2, v1〉 and T2 := 〈v3, v, v1〉 are two
of the triangles attached to vertex v then we compute c′ν , ν ∈ D2(v)∩T2

from known coefficients cη, η ∈ D2(v) ∩ T1 as follows

c′131 = b1c401 + b2c311 + b3c302, (15)

c′140 = b1c500 + b2c410 + b3c401, (16)

c′230 = b2
1c500 + 2b1b2c410 + b2

2c320 + 2b2b3c311 + b2
3c302 + 2b3b1c401,

where (b1, b2, b3) are barycentric coordinates of v3 w.r.to T1.
4. For each edge e ∈ Ev. Let the edge e := 〈v, v1〉 be shared by trian-

gles Te := 〈v, v2, v1〉 and T̃e := 〈v3, v, v1〉. We compute cT̃e

122 using C1

smoothness condition over e [17, Lemma 2.30]

cT̃e

122 = b1c302,

where (b1, b2, b3) are barycentric coordinates of v3 w.r.to Te and c302 is
known for ξ302 ∈ D2(v).

5. else if ξ ∈ M̃v, v ∈ VB then
6. Do as in 2) by choosing T1 := Tv be one of the boundary triangles

attached to v.
7. Compute cν , ν ∈ {D2(v) ∩ Tκ+1} \M̃v from known coefficients cη, η ∈

D2(v)∩Tκ, κ = 1, · · · , k−1, using the same C1 smoothness conditions
(15)-(16).

8. Do as in 4) only for e ∈ Ev\EB.
9. else if ξ ∈ Me, e ∈ EI then

10. Let the edge e := 〈v1, v2〉 is shared by triangles Te := 〈v1, v4, v2〉 and

T̃e := 〈v3, v1, v2〉. Then ξ := ξTe

212 and we compute cT̃e

122 with the help of
cTe

212 = 1 using C1 smoothness condition over e given by

cT̃e

122 = b3,

where (b1, b2, b3) are barycentric coordinates of v3 w.r.to Te.
11. end if 11



where a is the vector of the coefficients in the expansion wh =
∑N0

i=1 aisi, and
S, B, M and L are the stiffness, convection and mass matrices and the load
vector, respectively, with the entries, for i, j = 1, . . . , N0, defined as

Sij =

∫

Ω

∇si·A∇sjdx, Bij =

∫

Ω

sjb·∇sidx, Mij =

∫

Ω

csisjdx, Li =

∫

Ω

fsidx.

It is worth emphasising that we do not use these formulae directly to compute
the system matrices. Before we describe how we compute them let us define
a transformation matrix T required for this.

Transformation Matrix

Let {Tκ}Nt

κ=1 be the triangles in △h with some fixed ordering. Recall that any
spline s ∈ S̃h restricted to the triangle Tκ can be written in the form

s|Tκ
=

∑

i+j+k=5

cijkB
5
ijk,

where cijk are Bézier coefficients of s on Tκ. Let CTκ
, κ = 1, · · · , Nt, denote

the row vector of these coefficients cijk of s on Tκ, where we use the lexi-
cographic order as in [17, p. 23] to arrange these coefficients. That is, the
triples of the indices (i, j, k) are arranged by the ordering function

q(i, j, k) =

(
j + k + 1

2

)
+ k + 1.

Let V(s) be a row vector of all CTκ
’s, κ = 1, · · · , Nt, for a spline s, ordered

according to the triangles {Tκ}Nt

κ=1,

V(s) =
[
CT1

,CT2
, · · · ,CTNt

]
.

Now, if we construct a matrix by taking these vectors V(si) for the basis
splines s1, . . . , sN0

as its rows, then this matrix is our desired transformation
matrix T ,

T = [V(s1)
t, . . . ,V(sN0

)t]t.

Let S̃5(△h) denote the space of all discontinuous quintic splines over the
same triangulation △h. Clearly, T t represents the transformation that maps
the vector {cξ}ξ∈M̃ corresponding to s ∈ S̃h

0 onto the array of the coefficients

of s in the basis of the space S̃5(△h) defined by the quintic Bernstein basis
polynomials B5

ijk on all triangles.

Now let Ŝ = diag
(
ŜTκ

, Tκ ∈ △h
)
, B̂ = diag

(
B̂Tκ

, Tκ ∈ △h
)

and M̂ =

diag
(
M̂Tκ

, Tκ ∈ △h
)

be the block matrices with blocks defined by

ŜTκ
=

∫

Tκ

∇B5
ijk·A∇B5

rstdx, B̂Tκ
=

∫

Tκ

B5
ijkb·∇B5

rstdx, M̂Tκ
=

∫

Tκ

cB5
ijkB

5
rstdx.

12



Then we can compute the system matrices in (20) by using the relations

S = T ŜT t, B = T B̂T t, M = T M̂T t.

Note that this method of computing the system matrices is particularly
efficient as it is shown in [1] that the matrices Ŝ, B̂ and M̂ can be computed in
optimal complexity (constant cost per entry) even for high polynomial orders,
and the matrix T is sparse because the basis splines are locally supported.

Boundary Conditions

As discussed in Section 2, in order to impose the non-homogeneous boundary
conditions we require that the initial guess uh

0 ∈ S̃h, satisfy the following
condition

(uh
0 , v

h
b )L2(∂Ω) = (φ, vh

b )L2(∂Ω) ∀vh
b ∈ S̃h

b .

Now if (s1, . . . , sN0
, sN0+1, . . . , sN) is the M̃-basis for the space S̃h and (sN0+1, . . . , sN)

is a basis for S̃h
b , then the above boundary condition is reduced to the matrix

equation
MbCb = Lb,

where Mb =
[∫

∂Ω
sisjds

]N
i,j=N0+1

and Lb =
[∫

∂Ω
φsids

]N
i=N0+1

. It is important

to mention that si|e, e ∈ E, are univariate polynomials and they keep the
univariate BB-form [17, Remark 2.4]. Moreover, there is an explicit formula
for integration of the product of two polynomials in BB-form given by

∫

e

sisjds =
|e|
11

5∑

α=0
β=0

cαc′β

(
5
α

)(
5
β

)
(

10
α+β

) ,

where |e| is the length of e,

si|e =

5∑

α=0

cαB5
α and sj |e =

5∑

β=0

c′βB
5
β ,

with B5
α =

(
5
α

)
tα(1 − t)5−α, α = 0, . . . , 5, being the univariate quintic Bern-

stein polynomials on the edge e.
Now consider

∫

e

φsids =

∫

e

φ

5∑

α=0

cαB5
αds =

5∑

α=0

cα

∫

e

φB5
αds. (21)

Thus, computing the entries for Lb is reduced to approximating the Bernstein-
Bézier moments µ5

α(φ) =
∫

e
φB5

αds of φ using an appropriate quadrature rule

13



[1]. We use Gauss-Legendre 6-points rule to approximate the moments µ5
α(φ)

which returns the exact solution for polynomials of order up to 11. Note that,
unlike using C0 elements, here some degrees of freedom for S̃h

b lie inside the
domain Ω, see Theorem 5. Thus it would be difficult to impose the boundary
conditions merely by interpolating the function φ at the points corresponding
to the degrees of freedom lying on the boundary.

5 Numerical Results

This section is devoted to the numerical results for several fully nonlinear
problems, involving the Monge-Ampère equation and an unconditionally el-
liptic problem considered in [19]. The numerics for these problems confirm
the convergence and the theoretical error bounds of Theorem 1.

5.1 The Monge-Ampère equation

The Dirichlet problem for the Monge-Ampère equation is given by

GMA(u) = det(∇2u) − g(x) = 0, x ∈ Ω

u = φ, x ∈ ∂Ω
(22)

where g and φ are given functions with g > 0 on Ω required to keep the
problem elliptic. The weak formulation (19) of the linearised problem in this
case is to find wh ∈ Sh

0 such that
∫

Ω

∇wh · A∇vhdx =

∫

Ω

fvhdx, for all vh ∈ Sh
0 , (23)

with A = cof(∇2uh
k) as b = 0, c = 0 and f = GMA(uh

k) = det(∇2uh
k) − g(x),

where cof(M) denotes the cofactor of a 2 × 2 matrix M . As a result we are
left with the stiffness matrix and load vector to solve the linear system

SC = L,

for the unknown vector of Bézier coefficients C of wh.
As Monge-Ampère equation is elliptic only for convex functions, we need

the initial guess to be convex as well. In [13, Remark 2.1] it has been shown
that (22) and the Poisson-Dirichlet problem

∆u = 2
√

g, x ∈ Ω

u = φ, x ∈ ∂Ω
(24)

are closely related. Therefore we use the approximation solution of the
Poisson-Dirichlet problem (24) as an initial guess for the Newton scheme

14



(17). The initial guess obtained this way performs very well in our experi-
ments. However, we get much faster convergence of the Newton method by
using this initial guess only on initial mesh, whereas on the refined meshes
we take a quasi-interpolant [17, Section 5.7] of the solution from previous
level as an initial guess. We call this a multilevel approach.

The first three and the fifth test problems are standard benchmark prob-
lems for (22) over Ω = (0, 1)2 considered in many paper on the numerical
solution of the Monge-Ampère equation. In this case △h is the uniform tri-
angulation obtained by first dividing the domain into squares of side length h
and then drawing in the diagonals parallel to the line x2 = x1. In the fourth
test problem a non-rectangular domain is considered.

1. As the first test problem we solve (22) for the data

g(x) = (1 + |x|2)e|x|2, in Ω,

φ(x) = e
1

2
|x|2 ∀x ∈ ∂Ω,

where |x| =
√

x2
1 + x2

2. With this data the exact solution to the prob-

lem is u(x) = e
1

2
|x|2 ∈ C∞(Ω). The numerical results are presented

in Table 1. They confirm the convergence rate O(h4) in the H2-norm
predicted by Theorem 1, where ℓ = 6 as we are using polynomials of
degree 5. Moreover, as expected, we observe the convergence rates of
O(h6) and O(h5) in the L2 and H1 norms, respectively. The first row
of the table shows the errors for the initial guess. In addition to the
errors, Table 1 presents the number of Newton iterations (N) on each
mesh, the L2-norm of the residuals r := ‖G(uh

k)‖L2(Ω), and the size

‖p‖L2(Ω) of the L2-projection p of G(uh
k) on the space S̃h

0 . The pro-
jection p is found as a solution of the system MCp = L, where M is
the mass matrix and Cp is the vector of coefficients of the expansion of
p in the M̃0-basis. The size of the projection measures how well the
approximate solution uh

k solves the problem (5). We observe that the
number of Newton iterations is extremely small thanks to the fact that
the initial guess is chosen by the multilevel approach. The size of the
residual is close to the H2-norm error, as one can expect, and the size of
the projection is close to the unit round-off initially, and gets larger on
further refinement levels, obviously due to growing condition numbers
of the system matrices.

2. Second test problem is defined by

g(x) =
R2

(R2 − |x|2)2
∀x ∈ Ω, with R ≥

√
2,

φ(x) = −
√

R2 − |x|2 ∀x ∈ ∂Ω,

15



Table 1: Errors of approximate solution and rate of convergence for the
first test problem, N denotes the number of Newton’s iterations, r :=
‖G(uh

k)‖L2(Ω) is the size of the residual, and ‖p‖L2(Ω) is the size of the L2-

projection of G(uh
k) on S̃h

0 .

h L2-error rate H1-error rate H2-error rate N r ‖p‖L2(Ω)

initial 5.78e-3 3.25e-2 2.66e-1 9.64e-1
1 1.17e-4 1.03e-3 1.74e-2 2 5.15e-2 2.30e-15

1/2 4.77e-6 4.6 7.75e-5 3.7 2.25e-3 3.0 1 5.14e-3 1.74e-14
1/4 1.92e-7 4.6 7.04e-6 3.5 3.32e-4 2.8 1 8.28e-4 9.44e-14
1/8 2.42e-9 6.3 1.65e-7 5.4 1.58e-5 4.4 1 3.93e-5 3.89e-13
1/16 4.31e-11 5.8 6.61e-9 4.6 1.20e-6 3.7 1 3.56e-6 1.79e-12
1/32 6.60e-13 6.0 1.95e-10 5.1 7.45e-8 4.0 1 2.04e-7 7.38e-12
1/64 1.14e-14 5.9 7.28e-12 4.7 6.06e-9 3.6 1 1.66e-8 2.83e-11
1/128 8.16e-15 0.5 2.96e-13 4.6 3.73e-10 4.0 1 1.07e-9 1.06e-10

in (22). The exact solution is u(x) = −
√

R2 − |x|2. The function

g(x) has singularity at R =
√

2 and u ∈ W 1
p (Ω), 1 ≤ p < 4 for this

value of R, lacking H2-regularity. The method diverges for R =
√

2,
in line with Böhmer’s theory that guarantees convergence only if the
solution is in H2. But for R >

√
2 we have u ∈ C∞(Ω) and again,

in Table 2 and Table 3 for two different values of R, the results show
the same behaviour as in the first problem. The tables confirm that
the more the value of R is away from singularity the faster convergence
is achieved. Note that in this experiments much higher accuracy is
attained as compared to the results in [13] for the same test problem.

3. Third test problem is defined by

g(x) =
1

|x| ∀x ∈ Ω,

φ(x) =
(2|x|) 3

2

3
∀x ∈ ∂Ω.

in the Monge-Ampère equation (22). The difference to the previous

problems is that the exact solution u(x) =
(2|x|) 3

2

3
is not infinitely

differentiable, even u /∈ C2(Ω). However, as u ∈ Hs(Ω), for all s < 5
2
,

we expect convergence order O(h
5

2 ) in L2-norm. The results, in Table
4, confirm this.
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Table 2: Errors of approximate solution and rate of convergence for the
second test problem with R =

√
2 + .1. The meaning of the last three

columns is the same as in Table 1.

h L2-error rate H1-error rate H2-error rate N r ‖p‖L2(Ω)

initial 2.00e-3 1.67e-2 2.69e-1 1.02e0
1 2.34e-3 1.25e-2 2.15e-1 2 5.91e-1 1.92e-15

1/2 1.70e-4 3.8 1.57e-3 3.0 7.32e-2 1.6 2 1.68e-1 7.89e-15
1/4 6.01e-6 4.8 1.58e-4 3.3 1.75e-2 2.1 2 3.80e-2 2.92e-14
1/8 1.72e-7 5.1 1.31e-5 3.6 3.17e-3 2.5 1 6.61e-3 1.34e-13
1/16 3.92e-9 5.4 8.10e-7 4.0 4.05e-4 3.0 1 8.44e-4 5.04e-13
1/32 1.02e-10 5.3 3.71e-8 4.4 3.53e-5 3.5 1 7.23e-5 2.07e-12
1/64 1.93e-12 5.7 1.41e-9 4.7 2.80e-6 3.7 1 5.49e-6 8.45e-12

Table 3: Errors of approximate solution and rate of convergence for the
second test problem with R =

√
2 + 2.

h L2-error rate H1-error rate H2-error rate N r ‖p‖L2(Ω)

initial 1.34e-5 7.38e-5 6.07e-4 1.95e-4
1 7.66e-7 5.89e-6 8.20e-5 2 2.64e-5 1.84e-15

1/2 1.28e-8 5.9 2.50e-7 4.6 7.85e-6 3.4 1 2.49e-6 7.68e-15
1/4 4.33e-10 4.9 1.72e-8 3.9 8.65e-7 3.2 1 2.58e-7 2.97e-14
1/8 6.66e-12 6.0 4.94e-10 5.1 9.78e-8 4.1 1 1.46e-8 1.49e-13
1/16 1.10e-13 5.9 1.75e-11 4.8 3.36e-9 3.8 1 1.00e-9 5.71e-13
1/32 7.67e-15 3.6 5.53e-13 4.9 2.12e-10 3.9 1 6.17e-11 2.25e-12

4. Fourth test problem. This problem is different from the others because
we consider a non-rectangular domain Ω, as Böhmer’s method is ap-
plicable to any convex polygonal domain. Let Ω be bounded by the
lines

x1 = ±0.75, x2 = ±0.75, and |x2| − |x1| = 1,

see Figure 1(left), which also includes the initial triangulation. We
generate a sequence of meshes by the uniform refinement, where each
triangle is split into 4 similar subtriangles. This test problem is for (22)
with the same data as in first test problem. Again we choose initial
guess by the multilevel approach and use a solution of (24) on the first
level. The numerics again show the same rate of convergence as for the
rectangular domains, see Table 5. The graph of approximate solution
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Table 4: Errors of approximate solution and rate of convergence for third
test problem.

h L2-error rate H1-error rate H2-error rate N r ‖p‖L2(Ω)

initial 6.08e-3 2.99e-2 4.02e-1 2.23e-2
1 8.18e-4 1.21e-2 3.87e-1 2 2.28e-2 1.23e-16

1/2 1.95e-4 2.1 4.55e-3 1.4 2.77e-1 0.48 2 1.13e-2 3.53e-16
1/4 6.76e-5 1.5 1.73e-3 1.4 1.95e-1 0.50 2 1.49e-2 1.54e-15
1/8 1.65e-5 2.0 6.40e-4 1.4 1.36e-1 0.51 2 3.68e-2 5.53e-15
1/16 3.46e-6 2.3 2.30e-4 1.5 9.44e-2 0.53 2 8.47e-2 2.50e-14
1/32 6.75e-7 2.4 8.08e-5 1.5 6.33e-2 0.57 2 1.82e-1 9.76e-14

uh on the last level of triangulation is visualised in Figure 1 (right).

Table 5: Errors of approximate solution and rate of convergence for the fourth
test problem.

Levels L2-error rate H1-error rate H2-error rate N r ‖p‖L2(Ω)

initial 9.30e-4 3.96e-3 3.58e-2 4.39e-2
1st 5.01e-7 8.39e-6 3.94e-4 2 5.83e-4 1.56e-14
2nd 1.18e-8 5.4 3.45e-7 4.6 2.87e-5 3.8 1 3.97e-5 6.47e-14
3rd 2.11e-10 5.8 1.11e-8 4.9 1.91e-6 3.9 1 2.67e-6 2.76e-13
4th 3.54e-12 5.9 3.36e-10 5.1 1.33e-7 3.8 1 1.85e-7 1.12e-12
5th 4.36e-14 6.3 1.12e-11 4.9 8.79e-9 3.9 1 1.20e-8 4.65e-12
6th 4.85e-14 -0.2 5.00e-13 4.5 5.69e-10 3.9 1 8.12e-10 1.82e-11

5. Fifth test problem. Here we consider a homogeneous Dirichlet problem
for (22) with g = 1 over Ω = [0, 1]2. This test problem is interest-
ing because it does not have a smooth classical solution. Therefore,
Theorem 1 does not apply in this case. Nevertheless, we applied the
algorithm and noticed the convergence of the Newton method on coarse
levels, until h = 1

4
, but when we moved to more refined meshes we did

not see convergence any more even if we used the multilevel approach.
The approximate solution uh and its contour plot on a mesh with h = 1

4

is visualized in Figure 2.
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Figure 1: Non-rectangular domain Ω for fourth test problem with initial
triangulation (left) and approximate solution uh on the last level of triangu-
lation (right).
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Figure 2: Approximate solution uh of test 5 and its contour plot, h = 1
4
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5.2 Second Example

Consider the problem suggested in [19]

G2(u) = u3
11 + u3

22 + u11 + u22 − g(x) = 0, x ∈ Ω

u = φ, x ∈ ∂Ω
(25)

where uii = (∂i)
2
u, i = 1, 2. This problem is unconditionally elliptic, i.e.

the operator G2 is elliptic for any function u ∈ D(G2) = C2(Ω). Note that
Condition H of [7] is satisfied in this example. The last of our test problems
is for (25) in the domain Ω = [−1, 1]2, with the data given by

g(x) = ((4x2
1 − 2)3 + (4x2

2 − 2)3)e−3|x|2 + (4|x|2 − 4)e−|x|2, ∀x ∈ Ω,

φ(x) = e−|x|2 ∀x ∈ ∂Ω.

The matrix A in this case is

A =

[
3u2

11 + 1 0
0 3u2

22 + 1

]

and b = 0, c = 0. Note that A is strictly positive definite for any function u.
The triangulations △h with side length h are generated the same way as for
Ω = [0, 1]2 in Section 5.1.

To find an initial guess for the Newton method on the initial triangulation
△2 we use the approximate solution of the Laplace-Dirichlet problem

∆u = 0, x ∈ Ω,

u = φ, x ∈ ∂Ω,
(26)

whereas on the subsequent refinement levels we use the multilevel approach
as described in Section 5.1. Note that the method was divergent with initial
guess generated by (26) for h ≤ 1

2
.

The results are presented in Table 6. They confirm the theoretical con-
vergence rate of Böhmer’s method. However, we see a very slow convergence
of Newton’s iterations in this example, compare N in Tables 1–6. We also ob-
serve the difference in the behaviour of ‖p‖L2(Ω), which seems to indicate that
Newton method does not find a solution of (5). This phenomenon requires
further investigation.
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