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Summary. We review the surprisingly rich theory of approximation of functions of
many variables by piecewise constants. This covers for example the Sobolev-Poincaré
inequalities, parts of the theory of nonlinear approximation, Haar wavelets and tree
approximation, as well as recent results about approximation orders achievable on
anisotropic partitions.

1 Introduction

Let Ω be a bounded domain in R
d, d ≥ 2. Suppose that ∆ is a partition

of Ω into a finite number of subsets ω ⊂ Ω called cells, where the default
assumptions are just these: |ω| := meas(ω) > 0 for all ω ∈ ∆, |ω ∩ ω′| = 0
if ω 6= ω′, and

∑

ω∈∆ |ω| = |Ω|. For a finite set D we denote its cardinality
by |D|, so that |∆| stands for the number of cells ω in ∆. Given a function
f : Ω → R, we are interested in the error bounds for its approximation by
piecewise constants in the space

S(∆) =
{

∑

ω∈∆

cωχω : cω ∈ R

}

, χω(x) :=

{

1, if x ∈ ω,

0, otherwise.

The best approximation error is measured in the Lp-norm ‖ · ‖p := ‖ · ‖Lp(Ω),

E(f,∆)p := inf
s∈S(∆)

‖f − s‖p, 1 ≤ p ≤ ∞,

and various methods are known for the generation of the sequences of par-
titions ∆N such that E(f,∆N )p → 0 as N → ∞ under certain smoothness
assumptions on f , such as f ∈ W r

q (Ω), where W r
q (Ω) is the Sobolev space.

Note that the simple functions (measurable functions that take only
finitely many values) used in the definition of Lebesgue integral are piece-
wise constants in the above sense. Given a function f ∈ L∞(Ω), we can
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generate a partition ∆N as follows. Let m,M ∈ R be the essential infi-
mum and essential supremum of f in Ω, respectively. Note that ‖f‖∞ =
max{−m,M} ≥ (M − m)/2. Split the interval [m,M ] into N subintervals
Ik = [m + (k − 1)h,m + kh), k = 1, . . . , N − 1, IN = [m + (N − 1)h,M ],
h = (M −m)/N , and set

sN =

N
∑

k=1

ckχωk
, ωk = f−1(Ik), ck = m+ (k − 1

2 )h.

Then
‖f − sN‖∞ ≤ M−m

2N ≤ N−1‖f‖∞.

If f is continuous on Ω and m = −M 6= 0, then the above splitting of [m,M ]
can be used to show that E(f,∆)∞ ≥ N−1‖f‖∞ for any partition ∆ with
|∆| ≤ N . Clearly, the above partition ∆N is in general very complicated
because the cells ω may be arbitrary measurable sets and so the above sN

cannot be stored using a finite number of real parameters.
Therefore piecewise constant approximation algorithms are practically use-

ful only if the resulting approximation can be efficiently encoded. In the spirit
of optimal recovery we will measure the complexity of an approximation al-
gorithm by the maximum number of real parameters needed to store the
piecewise constant function s it produces. If the algorithm produces an ex-
plicit partition ∆ and defines s by s =

∑

ω∈∆ cωχω, then the constants cω give
N such parameters, where N = |∆|. As in all ‘partition based’ algorithms dis-
cussed in this paper the partition ∆ can be described using O(N) parameters,
their overall complexity is O(N). The same is true for the ‘dictionary based’
algorithms such as Haar wavelet thresholding, with N being the number of
basis functions that are active in an approximation.

In this paper we review a variety of algorithms for piecewise constant ap-
proximation for which the error bounds (‘Jackson estimates’) are available
for functions in classical function spaces (Sobolev spaces or Besov spaces).
We do not discuss ‘Bernstein estimates’ and the characterization of approxi-
mation spaces, and refer the interested reader to the original papers and the
survey [14] that extensively covers this topic. However, we present a number
of ‘saturation’ theorems that give a limit on the accuracy achievable by cer-
tain methods on general smooth functions. With only one exception (in the
beginning of Section 3) we do not discuss the approximation of functions of
one variable, where we again refer to [14].

The paper is organized as follows. Section 2 is devoted to a simple lin-
ear approximation algorithm based on a uniform subdivision of the domain
and local approximation by constants. In addition, we show that the approx-
imation order N−1/d cannot be improved on isotropic partitions and give a
review of the results on the approximation by constants (Sobolev-Poincaré
inequalities) on general domains. Section 3 is devoted to the methods of non-
linear approximation restricted to our topic of piecewise constants. We discuss
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adaptive partition based methods such as Birman-Solomyak’s algorithm and
tree approximation, as well as dictionary based methods such as Haar wavelet
thresholding and best n-term approximation. Finally, in Section 4 we present
a simple algorithm with the approximation order N−2/(d+1) of piecewise con-
stants on anisotropic polyhedral partitions, which cannot be further improved
if the cells of a partition are required to be convex.

2 Linear approximation on isotropic partitions

Given s =
∑

ω∈∆ cωχω, we have

‖f − s‖p =







(

∑

ω∈∆ ‖f − cω‖p
Lp(ω)

)1/p

if p <∞,

supω∈∆ ‖f − cω‖L∞(ω) if p = ∞.
(1)

Hence the best approximation on a fixed partition ∆ is achieved when cω are
the best approximating constants c∗ω(f) such that

‖f − c∗ω(f)‖Lp(ω) = inf
c∈R

‖f − c‖Lp(ω) =: E(f)Lp(ω).

In the case p = ∞ obviously

c∗ω(f) =
1

2
(Mωf +mωf), E(f)L∞(ω) =

1

2
(Mωf −mωf),

where
Mωf := ess sup

x∈ω
f(x), mωf := ess inf

x∈ω
f(x).

For any 1 ≤ p ≤ ∞, it is easy to see that the average value of f on ω,

fω := |ω|−1
∫

ω

f(x) dx,

satisfies ‖fω − c‖Lp(ω) ≤ ‖f − c‖Lp(ω) for any constant c, in particular for
c = c∗ω. Therefore

‖f − fω‖Lp(ω) ≤ 2E(f)Lp(ω),

and we conclude that the approximation

s∆(f) :=
∑

ω∈∆

fωχω ∈ S(∆) (2)

is near best in the sense that

‖f − s∆(f)‖p ≤ 2E(f,∆)p, 1 ≤ p ≤ ∞.

If f|ω belongs to the Sobolev space W 1
p (ω), and the domain ω is sufficiently

smooth then the error ‖f − fω‖Lp(ω) may be estimated with the help of the
Poincaré inequality
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‖f − fω‖Lp(ω) ≤ Cω diam(ω) |f |W 1
p (ω), f ∈W 1

p (ω), (3)

where Cω may still depend on ω in a scale-invariante way. For example, if
ω is a Lipschitz domain, then Cω can be found depending only on d, p and
the Lipschitz constant of the boundary. At the end of this section we provide
some more detail about the Poincaré inequality as well as the more general
Sobolev-Poincaré inequalities available for various types of domains.

If the partition ∆ is such that Cω ≤ C, where C is independent of ω (but
may depend for example on the Lipschitz constant of the boundary of Ω),
then (1) and (3) imply

‖f − s∆(f)‖p ≤ C diam(∆) |f |W 1
p (Ω), diam(∆) := max

ω∈∆
diam(ω).

This estimate suggests looking for partitions ∆ that minimize diam(∆) pro-
vided the number of cells N = |∆| is fixed. Clearly, diam(∆) ≥ CN−1/d for
some constant C independent of N , and the order N−1/d is achieved if we
for example choose a (hyper)cube Q containing Ω, split it uniformly into Nd

equal subcubes Qi, and define the cells of ∆ by intersecting Ω with these
subcubes, ωi = Ω ∪Qi, see Fig. 1. This gives a simple algorithm for piecewise
constant approximation with approximation order N−1/d for all f ∈W 1

p (Ω).

Q

ωi

Ω

Fig. 1. Uniform partition.

For the sake of simplicity we formulate this and all other algorithms only
for the case when Ω is a cube (0, 1)d.

Algorithm 1 Define∆ by splitting Ω = (0, 1)d into N = md cubes ω1, . . . , ωN

of edge length h = 1/m. Let s∆(f) be given by (2).

Theorem 1. The error of the piecewise constant approximation s∆(f) gen-
erated by Algorithm 1 satisfies
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‖f − s∆(f)‖p ≤ C(d, p)N−1/d |f |W 1
p (Ω), f ∈W 1

p (Ω), 1 ≤ p ≤ ∞. (4)

The order N−1/d in (4) means that an approximation with error ‖f −
s∆(f)‖p = O(ε) is only achieved using (1

ε )d degrees of freedom, which grows
exponentially fast with the number of dimensions d. This phenomenon is often
referred to as curse of dimensionality.

The approximation order N−1/d in (4) cannot be improved in general. See
[14, Section 6.2] for a discussion of saturation and inverse theorems, where
certain smoothness properties of f are deduced from appropriate assumptions
about the order of its approximation by multivariate piecewise polynomials.
For example, assuming that E(f,∆)∞ = o(diam(∆)) as diam(∆) → 0 for all
partitions ∆, we can easily show that f is a constant function. Indeed, for any
x, y ∈ Ω we can find a partition ∆ such that x and y belong to the same cell
ω, and diam(ω) = diam(∆) ≤ 2‖x− y‖2. Then |f(x) − f(y)| ≤ |f(x) − fω| +
|fω − f(y)| ≤ 4E(f,∆)∞ = o(diam(ω)). Hence |f(x)− f(y)| = o(‖x− y‖2) as
y → x, which implies that f has a zero differential at every x ∈ Ω, that is f
is a constant.

A saturation theorem in terms of the number of cells holds for any sequence
of ‘isotropic’ partitions. We say that a sequence of partitions {∆N} is isotropic
if there is a constant γ such that

diam(ω) ≤ γρ(ω) for all ω ∈
⋃

N

∆N ,

where ρ(ω) is the maximum diameter of d-dimensional balls contained in ω.
Note that an isotropic partition may contain cells of very different sizes, see
for example Fig. 2 below.

Theorem 2. Assume that f ∈ C1(Ω) and there is an isotropic sequence of
partitions {∆N} with lim

N→∞
diam(∆N ) = 0 such that

E(f,∆N )∞ = o(|∆N |−1/d), N → ∞.

Then f is a constant.

Proof. If f is not constant, then the gradient ∇f := [∂f/∂xi]
d
i=1 is nonzero at

a point x̂ ∈ Ω. Since the gradient of f is continuous, there is δ > 0, a unit vec-
tor σ and a cube Q ⊂ Ω with edge length h containing x̂ such that Dσf(x) ≥ δ
for all x ∈ Q, where Dσf = ∇fTσ denotes the directional derivative of f .
The cube Q̃ := {x ∈ Q : dist(x, ∂Q) > h/4} has edge length h/2 and volume
(h/2)d. Assume that N is large enough to ensure that diam(∆N ) < h/4. Then
any cell ω ∈ ∆N that has nonempty intersection with Q̃ is contained in Q. If
[x1, x2] is an interval in ω parallel to σ, then |f(x2) − f(x1)| ≥ δ‖x2 − x1‖2,
which implies Mωf −mωf ≥ δρ(ω) and hence

εN := E(f,∆N )∞ ≥ E(f)L∞(ω) ≥
δ

2
ρ(ω) ≥ δ

2γ
diam(ω).
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Therefore

|ω)| ≤ µd

(γ

δ

)d

εd
N ,

where µd denotes the volume of the d-dimensional ball of radius 1. Since Q̃ is
covered by such cells ω, we conclude that

(h

2

)d

= |Q̃| ≤
∑

ω∩Q̃6=∅

|ω| ≤ µd

(γ

δ

)d

εd
N |∆N |,

which implies

E(f,∆N )∞ ≥ hδ

2γµ
1/d
d

|∆N |−1/d,

contrary to the assumption. ⊓⊔

Sobolev-Poincaré inequalities

Sobolev-Poincaré inequalities provide bounds for the error of f−fω. They hold
on domains satisfying certain geometric conditions, for example the interior
cone condition or the Lipschitz boundary condition. In some cases even a
necessary and sufficient condition for ω to admit such an inequality is known.
A domain ω ⊂ R

d is called a John domain if there is a fixed point x0 ∈ ω and
a constant cJ > 0 such that every point x ∈ ω can be connected to x0 by a
curve γ ⊂ ω such that

dist(y, ∂ω) ≥ cJℓ(γ(x, y)), for all y ∈ γ,

where ℓ(γ(x, y)) denotes the length of the segment of γ between x and y.
Every domain with the interior cone condition is a John domain, but not
otherwise. In particular, there are John domains with fractal boundary of
Hausdorff dimension greater than d− 1.

The following Sobolev inequality holds for all John domains ω ⊂ R
d, see

[18] and references therein,

‖f − fω‖Lq∗(ω) ≤ C(d, q, λ)‖∇f‖Lq(ω), f ∈ W 1
q (ω), 1 ≤ q < d, (5)

where q∗ = dq/(d − q) is the Sobolev conjugate of q, and λ is the John
constant of ω. Note that ‖∇f‖Lq(ω) denotes the Lq-norm of the Euclidean

norm of ∇f , that is ‖∇f‖q
Lq(ω) =

∫

ω

(

∑d
i=1 |∂f/∂xi|2

)q/2

dx, which is equiv-

alent to the more standard seminorm of the Sobolev space W 1
q (ω) given by

|f |qW 1
q (ω) =

∑d
i=1

∫

ω
|∂f/∂xi|q dx. We prefer using ‖∇f‖Lq(ω) because of the

explicit expressions for the constant C in (7) available in certain cases, see
the end of this section.

According to [7], if the Sobolev inequality (5) holds for some 1 ≤ q < d and
certain mild separation condition (valid for example for any simply connected
domain in R

2) is satisfied, then ω is a John domain.
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Assuming 1 ≤ p <∞, let τ = max{ d
1+d/p , 1}. Then τ∗ ≥ p and 1 ≤ τ < d.

If |ω| <∞, then Hölder inequality and (5) imply for any q ≥ τ

‖f − fω‖Lp(ω) ≤ |ω| 1p− 1

τ∗ ‖f − fω‖Lτ∗(ω)

≤ C(d, τ, λ)|ω| 1p− 1

τ∗ ‖∇f‖Lτ(ω)

≤ C(d, τ, λ)|ω| 1d + 1

p
− 1

q ‖∇f‖Lq(ω),

and we arrive at the following Sobolev-Poincaré inequality for all p, q such
that 1 ≤ p <∞ and τ ≤ q ≤ ∞,

‖f − fω‖Lp(ω) ≤ C(d, p, λ)|ω| 1d + 1

p
− 1

q ‖∇f‖Lq(ω), f ∈W 1
q (ω). (6)

In particular, since τ ≤ p, we can choose q = p, which leads to the Poincaré
inequality for bounded John domains for all 1 ≤ p <∞ in the form

‖f − fω‖Lp(ω) ≤ C diam(ω)‖∇f‖Lp(ω), f ∈ W 1
p (ω), (7)

where C depends only on d, p, λ.
Poincaré inequality in the case p = ∞ has been considered in [25]. If

ω ⊂ R
d is a bounded path-connected domain, then

E(f)L∞(ω) ≤ r(ω)‖∇f‖L∞(ω), with r(ω) := inf
x∈ω

sup
y∈ω

ρω(x, y),

where ρω(x, y) is the geodesic distance, i.e. the infimum of the lengths of the
paths in ω from x to y.

If ω is star-shaped with respect to a point, then r(ω) ≤ diam(ω), and so
(7) holds with C = 2 for all such domains if p = ∞. Moreover, as observed
in [25], the arguments of [2, 11] can be applied to show that for any bounded
star-shaped domain

‖f − fω‖Lp(ω) ≤ 2
1−d/p diam(ω)‖∇f‖Lp(ω), f ∈W 1

p (ω), d < p ≤ ∞. (8)

In particular, (8) applies to star-shaped domains with cusps that fail to be
John domains.

If ω is a bounded convex domain in R
d, then (7) holds for all 1 ≤ p ≤ ∞

with a constant C depending only on d [12]. Moreover, optimal constants are
known for p = 1, 2: C = 1/π for p = 2 [22, 3] and C = 1/2 for p = 1 [1]. Since
r(ω) = 1

2 diam(ω), it follows that (7) holds with C = 1 if p = ∞.
Note that similar estimates are available for the approximation by poly-

nomials of any degree, where in the case p = q the corresponding result is
usually referred to as the Bramble-Hilbert lemma, see [6, Chapter 4]. More-
over, instead of Sobolev spaces, the smoothness of f can be measured in some
other function spaces (e.g. Besov spaces), or with the help of a modulus of
smoothness (Whitney estimates), see [14, 13].
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3 Nonlinear approximation

We have seen in Section 2 that the approximation order N−1/d is the best
achievable on isotropic partitions. Nevertheless, by using more sophisticated
algorithms the estimate (4) can be improved in the sense that the norm
|f |W 1

p (Ω) in its right hand side is replaced by a weaker norm, for example

|f |W 1
q (Ω) with q < p. This improvement is often quite significant because the

norm |f |W 1
q (Ω) is finite for functions with more substantial singularities than

those allowed in the space W 1
p (Ω), see [14] for a discussion.

Recall that in Algorithm 1 the partition ∆ is independent of the target
function f , and so s∆(f) depends linearly on f . A simple example of a non-
linear algorithm is given by Kahane’s approximation method for continuous
functions of bounded total variation on an interval, see [14, Section 3.2]. To
define a partition of the interval (a, b), the points a = t0 < t1 < · · · < tN = b
are chosen such that var(ti−1,ti)(f) = 1

N var(a,b)(f), i = 1, . . . , N − 1. By set-
ting ωi = (ti−1, ti), ci = (Mωi

f +mωi
f)/2, we see that the piecewise constant

function s =
∑N−1

i=1 ciχωi
satisfies ‖f − s‖∞ ≤ 1

2N var(a,b)(f). Thus, for the

partition ∆ = {ωi}N−1
i=1 ,

E(f,∆)∞ ≤ 1
2N var(a,b)(f) = 1

2N |f |BV (a,b) ≤ 1
2N |f |W 1

1
(a,b),

where the last inequality presumes that f belongs to W 1
1 (a, b), that is it is

absolutely continuous and its derivative is absolutely integrable.
In the multivariate case the first algorithm of this type was given in [5]. It

is based on dyadic partitions ∆ of Ω = (0, 1)d that consist of the dyadic cubes
of the form

2−jd(k1, k1 + 1) × · · · × (kd, kd + 1), j = 0, 1, 2, . . . , 0 ≤ ki < 2jd,

produced adaptively by successive dyadic subdivisions of a cube into 2d equal
subcubes with halved edge length, see Fig. 2.

The following lemma plays a crucial role in [5].

Lemma 1. Let Φ(ω) be a nonnegative function of sets ω ⊂ Ω which is sub-
additive in the sense that Φ(ω′) + Φ(ω′′) ≤ Φ(ω′ ∪ ω′′) as soon as ω′, ω′′ are
disjoint subdomains of Ω. Given α > 0, we set

gα(ω) := |ω|αΦ(ω), ω ⊂ Ω,

and, for any partition ∆ of Ω,

Gα(∆) := max
ω∈∆

gα(ω).

Assume that a sequence of partitions {∆k}∞k=0 of Ω = (0, 1)d into dyadic cubes
is obtained recursively as follows. Set ∆0 = {Ω}. Obtain ∆k+1 from ∆k by
the dyadic subdivision of those cubes ω ∈ ∆k for which
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Fig. 2. Example of a dyadic partition.

gα(ω) ≥ 2−dαGα(∆k).

Then
Gα(∆k) ≤ C(d, α)|∆k|−(α+1)Φ(Ω), k = 0, 1, . . . .

This lemma can be used with Φ(ω) = |f |qW 1
q (ω), 1 ≤ q < ∞, which is

obviously subadditive, giving rise to the following algorithm which we only
formulate for piecewise constants even though the results in [5] also apply to
the higher order piecewise polynomials.

Algorithm 2 ([5]) Suppose we are interested in the approximation in Lp

norm, 1 < p ≤ ∞. Choose 1 ≤ q < ∞ such that q > τ := d
1+d/p (τ = d if

p = ∞), and assume that f ∈ W 1
q (Ω), Ω = (0, 1)d. Set ∆0 = {Ω}. While

|∆k| < N , obtain ∆k+1 from ∆k by the dyadic subdivision of those cubes
ω ∈ ∆k for which

gα(ω) ≥ 2−dα max
ω∈∆

gα(ω),

where
gα(ω) := |ω|α|f |qW 1

q (ω), α = q
τ − 1.

Since |∆k| < |∆k+1|, the subdivisions terminate at some ∆ = ∆m with |∆| ≥
N and |∆| = O(N). The resulting piecewise constant approximation s∆(f) of
f is given by (2).

Theorem 3 ([5]). The error of the piecewise constant approximation s∆(f)
generated by Algorithm 2 satisfies

‖f − s∆(f)‖p ≤ C(d, p, q)N−1/d |f |W 1
q (Ω), f ∈W 1

q (Ω). (9)
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Proof. We only consider the case p < ∞. For any ω ∈ ∆ it follows by the
Sobolev-Poincaré inequality (6) for cubes that

‖f − fω‖p
Lp(ω) ≤ C1|ω|

p
d
+1−p

q |f |pW 1
q (ω) = C1g

p/q
α (ω) ≤ C1G

p/q
α (∆),

where C1 depends only on d, p, q. Hence

‖f − s∆(f)‖p
p =

∑

ω∈∆

‖f − fω‖p
Lp(ω) ≤ C1|∆|Gp/q

α (∆).

Now Lemma 1 implies

‖f − s∆(f)‖p ≤ C2|∆|1/p|∆|−(α+1)/q Φ1/q(Ω) = C2|∆|−1/d|f |W 1
q (Ω). ⊓⊔

If q ≥ p, then the estimate (9) is also valid for the much simpler Algo-
rithm 1. Therefore the scope of Algorithm 2 is when f ∈ W 1

q (Ω) for some q
satisfying τ < q < p but f /∈ W 1

p (Ω) or if |f |W 1
q (Ω) is significantly smaller

than |f |W 1
p (Ω). Note that the computation of gα(ω) in Algorithm 2 requires

first order partial derivatives of f . Algorithms 2 is nonlinear (in contrast to
Algorithm 1) because the partition ∆ depends on the target function f .

An adaptive algorithm based on the local approximation errors rather than
local Sobolev norm of f was studied in [17]. We again restrict to the piecewise
constant case.

Algorithm 3 Assume f ∈ Lp(Ω), Ω = (0, 1)d, for some 0 < p ≤ ∞ and
choose ε > 0. Set ∆0 = {Ω}. For k = 0, 1, . . ., obtain ∆k+1 from ∆k by the
dyadic subdivision of those cubes ω ∈ ∆k for which

‖f − fω‖Lp(ω) > ε.

Since ‖f − fω‖Lp(ω) → 0 as |ω| → 0, the subdivisions terminate at some
∆ = ∆m. The resulting piecewise constant approximation s∆(f) of f is given
by (2).

Now in contrast to [5], 0 < p < 1 is also allowed. The error bounds are
obtained for functions in Besov spaces rather than Sobolev spaces. Recall that
f belongs to the Besov space Bα

q,σ(Ω), α > 0, 0 < q, σ ≤ ∞, if

|f |Bα
q,σ(Ω) =







(

∫ ∞

0 (t−αωr(f, t)q)
σ dt

t

)1/σ

if 0 < σ <∞,

supt>0 t
−αωr(f, t)q if σ = ∞.

is finite, where r = [α]+1 is the smallest integer greater than α, and ωr(f, t)q

denotes the r-th modulus of smoothness of f in Lq. In particular, Bα
q,∞(Ω) =

Lip(α,Lq(Ω)) for 0 < α < 1.
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Theorem 4 ([17]). Let 0 < α < 1, q > d
α+d/p and 0 < σ ≤ ∞. If f ∈

Bα
q,σ(Ω), then for any N there is an ε > 0 such that the partition ∆ produced

by Algorithm 3 satisfies |∆| ≤ N and

‖f − s∆(f)‖p ≤ C(d, p, q)N−α/d |f |Bα
q,σ(Ω).

The set of all dyadic cubes is a tree T dc, where the children of a cube ω
are the cubes ω1, . . . , ω2d obtained by its dyadic subdivision. The only root
of T dc is Ω = (0.1)d. Clearly, Algorithms 2 and 3 produce a complete subtree
T of T dc in the sense that for any node in T its parent and all siblings are
also in T . The corresponding partition ∆ consists of all leaves of T . If we
set e(ω) = ‖f − fω‖p

Lp(ω), then E(T ) :=
∑

ω∈∆ e(ω) = ‖f − s∆(f)‖p
p. It is

easy to see that |∆| = 1 + (2d − 1)n(T ), where n(T ) denotes the number of
subdivisions used to create T . The quantity n(T ) measures the complexity of
a tree, and En := infn(T )≤nE(T ) gives the optimal error achievable by a tree
of a given complexity. It is natural to look for optimal or near optimal trees.
The concept of tree approximation was introduced in [8] in the context of
n-term wavelet approximation. General results applicable in particular to the
piecewise constant approximations on dyadic partitions are given in [4]. The
idea is that replacing ‖f−fω‖Lp(ω) > ε in Algorithm 3 by a more sophisticated
refinement criterion leads to an algorithm that produces a near optimal tree.

Algorithm 4 ([4]) Assume f ∈ Lp(Ω), Ω = (0, 1)d, for some 1 ≤ p < ∞
and choose ε > 0. Generate a sequence of complete subtrees Tk of T dc as
follows. Set T0 = {Ω} and α(Ω) = 0. For k = 0, 1, . . ., obtain Tk+1 from Tk

by the dyadic subdivision of those leaves ω of Tk for which

e(ω) := ‖f − fω‖p
Lp(ω) > ε+ α(ω),

and define α(ωi) for all children ω1, . . . , ω2d of ω by

α(ωi) =
e(ωi)

σ(ω)

[

α(ω) + (ε− e(ω) − σ(ω))+

]

, σ(ω) :=
∑

j

e(ωj),

assuming that σ(ω) 6= 0. The algorithm terminates at some tree T = Tm since
‖f−fω‖Lp(ω) → 0 as |ω| → 0. The resulting piecewise constant approximation
s∆(f) of f is given by (2), where ∆ is the dyadic partition defined by the leaves
of T .

Theorem 5 ([4]). The tree T produced by Algorithm 4 is near optimal as it
satisfies

E(T ) ≤ 2(2d + 1)E[n/2], n = n(T ).

Further results on tree approximation are reviewed in [15].

The above algorithms generate piecewise constant approximations by con-
structing an appropriate partition of Ω. A different approach is to look for
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an approximation as linear combination of a fixed set of piecewise constant
‘basis functions’, for example characteristic functions of certain subsets of Ω.

More general, let D ⊂ Lp(Ω) be a set of functions, called dictionary,
such that the finite linear combinations of the elements in D are dense in
Lp(Ω). Note that the set D does not have to be linearly independent. Given
f ∈ Lp(Ω), the error of the best n-term approximation is defined by

σn(f,D)p = inf
s∈Σn

‖f − s‖p,

where Σn = Σn(D) is the set of all linear combinations of at most n elements
of D,

Σn(D) :=
{

∑

g∈D

cgg : D ⊂ D, |D| ≤ n, cg ∈ R

}

.

If the functions in D are piecewise constants, then the approximants in
Σn(D) are piecewise constants as well. If each element g ∈ D can be described
using a bounded number of parameters, then s =

∑

g∈D cgg ∈ Σn(D) requires
O(n) parameters even though the number of cells in the partition ∆ such that
s ∈ S(∆) may in general grow superlinearly (even exponentially) with n.

Piecewise constant approximation s∆(f) produced by Algorithm 2 or 3
belongs to Σn(Dc), with n = |∆|, where the dictionary Dc consists of the
characteristic functions χω of all dyadic cubes ω ⊆ (0, 1)d. Therefore Theorems
3 and 4 imply that

σn(f,Dc)p ≤
{

C(d, p, q)n−α/d|f |W α
q (Ω) if f ∈Wα

q (Ω), α = 1,

C(d, p, q)n−α/d|f |Bα
q,σ(Ω) if f ∈ Bα

q,σ(Ω), 0 < α < 1.

as soon as q > d
α+d/p .

Clearly, Σn(Dc) includes many piecewise constants with more then n
dyadic cells, for example, χ(0,1)2 − χ(0,1/2m)2 ∈ Σ2(Dc) is piecewise constant
with respect to a partition of (0, 1)2 into 3m + 1 dyadic squares. A larger
dictionary Dr consisting of the characteristic functions of all ‘dyadic rings’
(differences between pairs of embedded dyadic cubes) has been considered in
[9, 20]. An adaptive algorithm proposed in [9] produces a piecewise constant
approximation s∆(f) of any function f of bounded variation, where ∆ is a
partition of (0, 1)2 into N dyadic rings, such that

‖f − s∆(f)‖2 ≤ 18
√

3N−1/2|f |BV ((0,1)2),

where |f |BV (Ω) is the variation of f over Ω. Recall that the space BV (Ω)
coincides with Lip(1, L1(Ω)) and contains the Besov space B1

1,1(Ω). In [20]
this result is generalized to certain spaces of bounded variation with respect
to dyadic rings, and to the Besov spaces, leading in particular to the estimate

σn(f,Dr)p ≤ C(d, p)n−α/d|f |Bα
τ,τ (Ω), f ∈ Bα

τ,τ (Ω), 0 < α < 1,
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where τ = d
α+d/p . Recall for comparison that q > τ in Theorems 3 and 4.

An important ‘piecewise constant’ dictionary Dh is given by the multi-
variate Haar wavelets. Let ψ0 = χ(0,1) and ψ1 = χ(0,1/2) − χ(1/2,1). For any

e = (e1, . . . , ed) ∈ V d, where V d is the set consisting of the nonzero vertices
of the cube (0, 1)d, let

ψe(x1, . . . , xd) := ψe1(x1) · · ·ψed(xd).

Then the set

Ψh = {ψe
j,k := 2jd/2ψe(2j(· − k)) : j ∈ Z, k ∈ Z

d, e ∈ V d}

of Haar wavelets ψe
j,k is an orthonormal basis for L2(R

d). Therefore every

f ∈ L2(R
d) has an L2-convergent Haar wavelet expansion

f =
∑

j,k,e

〈f, ψe
j,k〉ψe

j,k, 〈f, ψe
j,k〉 :=

∫

Rd

f(x)ψe
j,k(x) dx.

If f ∈ L2(Ω), Ω = (0, 1)d, then f − fΩ has zero mean on (0, 1)d and hence
by extending it to R

d by zero and taking a Haar wavelet decomposition, we
obtain an L2-convergent series

f = fΩ +
∑

(j,k,e)∈ΛΩ

fj,k,eψ
e
j,k, (10)

where ΛΩ denotes the set of indices (j, k, e) such that suppψe
j,k ⊆ Ω, and

fj,k,e are the Haar wavelet coefficients of f ,

fj,k,e =

∫

(0,1)d

f(x)ψe
j,k(x) dx.

Clearly, the Haar wavelet coefficients are well defined for any function f ∈
L1(Ω). The series (10) converges unconditionally in Lp-norm if f ∈ Lp(Ω),
1 < p < ∞. This implies in particular that every subset of {‖fj,k,eψ

e
j,k‖p :

(j, k, e) ∈ ΛΩ} has a largest element. The dictionary of Haar wavelets on
Ω = (0, 1)d is given by

Dh = {ψe
j,k : (j, k, e) ∈ ΛΩ}.

A standard approximation method for this dictionary is thresholding, also
called greedy approximation.

Algorithm 5 (Haar wavelet thresholding) Assume f ∈ Lp(Ω), Ω =
(0, 1)d, for some 1 < p < ∞. Let

∫

Ω
f(x) dx = 0. (Otherwise, replace

f by f − fΩ.) Given n ∈ N, choose n largest elements in the sequence
{‖fj,k,eψ

e
j,k‖p : (j, k, e) ∈ ΛΩ} and denote the set of their indices by Λn

Ω.
The resulting approximation of f is given by

Gn(f) =
∑

(j,k,e)∈Λn
Ω

fj,k,eψ
e
j,k.
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If p = 2, then clearly Gn(f) is the best n-term approximation of f with
respect to the dictionary Dh. The following theorem gives an error bound in
this case.

Theorem 6 ([9]). Let f ∈ BV (Ω), Ω = (0, 1)2, and
∫

Ω f(x) dx = 0. Then
the approximation Gn(f) produced by Algorithm 5 satisfies

‖f −Gn(f)‖2 ≤ C n−1/2|f |BV (Ω),

where C = 36(480
√

5 + 168
√

3).

It turns out that Gn(f) is also near best for any 1 < p <∞.

Theorem 7 ([24]). Let f ∈ Lp(Ω), Ω = (0, 1)d, for some 1 < p < ∞, and
∫

Ω f(x) dx = 0. The approximation Gn(f) produced by Algorithm 5 satisfies

‖f −Gn(f)‖p ≤ C(d, p)σn(f,Dh)p.

An estimate for σn(f,Dh)p follows from the results of [16] by using the
extension theorems for functions in Besov spaces, see [14, Section 7.7].

Theorem 8 ([16]). Let 1 < p <∞, 0 < α < 1/p, τ = d
α+d/p . If f ∈ Bα

τ,τ (Ω),

Ω = (0, 1)d, and
∫

Ω f(x) dx = 0, then

σn(f,Dh)p ≤ C(d, p)n−α/d |f |Bα
τ,τ (Ω).

The best n-term approximation by piecewise constants (and by piecewise
polynomials of any degree) on hierarchical partitions of R

d or (0, 1)d into
anisotropic dyadic boxes of the form

( k1

2j1d
,
k1 + 1

2j1d

)

× · · · ×
( kd

2jdd
,
kd + 1

2jdd

)

, js, ks ∈ Z,

has been studied in [23]. Here, the smoothness of the target function is ex-
pressed in terms of certain Besov-type spaces defined with respect to a given
hierarchical partition. In [21], results of the same type are obtained for even
more flexible anisotropic hierarchical triangulations. Let T = ∪m∈Z∆m, where
each ∆m is a locally finite triangulation of R

2 such that ∆m+1 is obtained
from ∆m by splitting each triangle ω ∈ ∆m into at least two and at most M
subtriangles (children). The hierarchical triangulation T is called weak locally
regular if there are constants 0 < r < ρ < 1 (r ≤ 1

4 ), such that for any
ω ∈ T it holds r|ω′| ≤ |ω| ≤ ρ|ω′|, where ω′ ∈ T is the parent triangle of
ω. Clearly, the triangles in T may have arbitrarily small angles. The skinny
B-space Bα,k

q (T ), 0 < q <∞, α > 0, k ∈ N, is the set of all f ∈ Lloc
q (R2) such

that

|f |Bα,k
q (T ) :=

(

∑

ω∈T

|ω|−αqwk(f, ω)q
q

)1/q

,
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where
wk(f, ω)q := sup

h∈R2

‖δk
h(f)‖Lq(ω),

δk
h(f) being the k-th finite difference of f , in particular

δ1h(f, x) :=

{

f(x+ h) − f(x), if [x, x + h] ⊂ ω,

0, otherwise.

It is shown in [21] that if T is regular, i.e. there is a positive lower bound
for the minimum angles of all triangles in T , then Bα,k

q (T ) = B2α
q,q(R

2) with
equivalent norms whenever 0 < 2α < min{1/q, k}.

Consider the dictionary DT = {χω : ω ∈ T }.

Theorem 9 ([21]). Let 0 < p < ∞, α > 0, τ = 2
α+2/p . If f ∈ B

α
2

,1
τ (T ) ∩

Lp(R
2), then

σn(f,DT )p ≤ C(p, α, ρ, r)n−α/2 |f |
B

α
2

,1

τ (T )
.

Note that certain Haar type bases can be introduced on the anisotropic
dyadic partitions and on hierarchical triangulations obtained by a special re-
finement rule, see [23, 21] for their definition and approximation properties.
An extension of Theorem 9 to R

d with d > 2 is given in [13].

4 Anisotropic partitions

We have seen in Theorem 2 that piecewise constants on isotropic parti-
tions cannot approximate nontrivial smooth functions with order better than
N−1/d. We now turn to the question what approximation order can be
achieved on anisotropic partitions. An argument similar to that in the proof
of Theorem 2 shows that it is not better than N−2/(d+1) if we assume that
the partition is convex, i.e. all its cells are convex sets.

Theorem 10 ([10]). Assume that f ∈ C2(Ω) and the Hessian of f is positive
definite at a point x̂ ∈ Ω. Then there is a constant C depending only on f
and d such that for any convex partition ∆ of Ω,

E(f,∆)∞ ≥ C|∆|−2/(d+1).

The order of piecewise constant approximation on anisotropic partitions
in two dimensions has been investigated in [19]. It is shown that for any
f ∈ C2([0, 1]2) there is a sequence of partitions ∆N of (0, 1)2 into polygons
with the cell boundaries consisting of totally O(N) straight line segments,
such that ‖f − s∆N

(f)‖∞ = O(N−2/3). Moreover, the approximation order
N−2/3 cannot be improved on such partitions. Note that by triangulating
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each polygonal cell of∆N one obtains a convex partition with O(N) triangular
cells, so that Theorem 10 also applies, giving the same saturation orderN−2/3.
Another result of [19] is that for any f ∈ C3([0, 1]2) there is a sequence of
partitions ∆N of (0, 1)2 into cells with piecewise parabolic boundaries defined
by a total of O(N) parabolic segments (pieces of graphs of univariate quadratic
polynomials) such that ‖f − s∆N

(f)‖∞ = O(N−3/4).
The following algorithm achieves the approximation order N−2/(d+1) on

convex polyhedral partitions with totally O(N) facets.

Algorithm 6 ([10]) Assume f ∈W 1
1 (Ω), Ω = (0, 1)d. Split Ω into N1 = md

cubes ω1, . . . , ωN1
of edge length h = 1/m. Then split each ωi into N2 slices

ωij, j = 1, . . . , N2, by equidistant hyperplanes orthogonal to the average gra-
dient gi := |ωi|−1

∫

ωi
∇f on ωi. Set ∆ = {ωij : i = 1, . . . , N1, j = 1, . . . , N2},

and define the piecewise constant approximation s∆(f) by (2). Clearly, |∆| =
N1N2 and each ωij is a convex polyhedron with at most 2(d+ 1) facets.

This algorithm is illustrated in Fig. 3.

Fig. 3. Algorithm 6 (d = 2, m = 4). The arrows stand for the average gradients gi

on the cubes ωi. The cells ωij are shown only for one cube.

Theorem 11 ([10]). Assume that f ∈ W 2
p (Ω), Ω = (0, 1)d, for some 1 ≤

p ≤ ∞. For any m = 1, 2, . . ., generate the partition ∆m by using Algorithm 6
with N1 = md and N2 = m. Then

‖f − s∆m
(f)‖p ≤ C(d, p)N−2/(d+1)(|f |W 1

p (Ω) + |f |W 2
p (Ω)), (11)

where N = |∆m| = md+1.
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Proof. For simplicity we assume d = 2 and p = ∞. (The general case is treated
in [10].) Let us estimate the error of the best approximation of f by constants
on ωij ,

E(f)L∞(ωij) =
1

2

(

max
x∈ωij

f(x) − min
x∈ωij

f(x)
)

.

Let σi be a unit vector orthogonal to gi. Since ∇f is continuous, there is
x̃ ∈ ωi such that gi = ∇f(x̃). Then Dσi

f(x̃) = 0 and hence ‖Dσi
f‖L∞(ωi) ≤

c1h|f |W 2
∞

(ωi). Given x, y ∈ ωij , choose a point x′ ∈ ωij such that y − x′ and
x′ − x are collinear with gi and σi, respectively. (This is always possible if we
swap the roles of x and y when necessary, see Fig. 4.)

h

ĥ

gi

σ

x

y
x′

Fig. 4. Illustration of the proof of Theorem 11, showing a single ωi.

Hence, denoting by ĥ the distance between the hyperplanes that split ωi,
we obtain

|f(y) − f(x)| ≤ |f(y) − f(x′)| + |f(x′) − f(x)|
≤ ĥ‖∇f‖L∞(ωij) + c2h‖Dσf‖L∞(ωij)

≤ c3(ĥ|f |W 1
∞

(ωij) + h2|f |W 2
∞

(ωi))

≤ c4m
−2(|f |W 1

∞
(ωij) + |f |W 2

∞
(ωi)).

Thus,

‖f − fωij
‖L∞(ωij) ≤ 2E(f)L∞(ωij) ≤ c4m

−2(|f |W 1
∞

(Ω) + |f |W 2
∞

(Ω)),

and (11) follows. ⊓⊔
The improvement of the approximation order by piecewise constants from

N−1/d on isotropic partitions to N−2/(d+1) on convex partitions does not
extend to higher degree piecewise polynomials. Given a partition ∆, let
E1(f,∆)p denote the best error of (discontinuous) piecewise linear approx-
imation in Lp-norm. Then the approximation order on isotropic partitions is
N−2/d for sufficiently smooth functions, and it cannot be improved in general
on any convex partitions.
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Theorem 12 ([10]). Assume that f ∈ C2(Ω) and the Hessian of f is positive
definite at a point x̂ ∈ Ω. Then there is a constant C depending only on f
and d such that for any convex partition ∆ of Ω,

E1(f,∆)∞ ≥ C|∆|−2/d.
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