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Abstract

This paper presents a novel approach for improved diffusion tensor fibre tractogra-
phy, aiming to tackle a number of the limitations of current fibre tracking algorithms,
and describes a quantitative analysis tool for probabilistic tracking algorithms. We
consider the sampled random paths generated by a probabilistic tractography algo-
rithm from a seed point as a set of curves, and develop a statistical framework for
analysing the curve-set geometrically that finds the average curve and dispersion
measures of the curve-set statistically. This study is motivated firstly by the goal
of developing a robust fibre tracking algorithm, combining the power of both de-
terministic and probabilistic tracking methods using average curves. These typical
curves produce strong connections to every anatomically distinct fibre tract from a
seed point and also convey important information about the underlying probability
distribution. These single well-defined trajectories overcome a number of the limita-
tions of deterministic and probabilistic approaches. A new clustering algorithm for
branching curves is employed to separate fibres into branches before applying the
averaging methods. Secondly, a quantitative analysis tool for probabilistic tracking
methods is introduced using statistical measures of curve-sets. Results on phantom
and in vivo data confirm the efficiency and effectiveness of the proposed approach for
the tracking algorithm and the quantitative analysis of the probabilistic methods.
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1. Introduction

Fibre tractography using diffusion MR images is a promising method for recon-
structing the pathways of white matter fasciculi in the human brain. This method
allows one to study the anatomical connectivity of the brain and is an essential diag-
nostic tool for a number of neurological diseases. A variety of algorithms have been
proposed aiming to generate fibre-tract trajectories. Generally these algorithms can
be categorised into two main types, deterministic and probabilistic. Deterministic
approaches (Basser et al., 2000; Mori et al., 1999; Lazar et al., 2003a) are based on
the assumption that the principal eigenvector (PEV) of the diffusion tensor is paral-
lel to the underlying dominant fibre direction in each image voxel. They propagate
a single pathway bi-directionally from a seed point by moving in a direction that is
parallel to the PEV. These approaches are capable of creating anatomically reliable
reconstructions of major white matter tracts. However, they do not correctly deal
with branching of white matter tracts as such algorithms produce only one path per
seed point and there is no measure describing the uncertainty of the reconstructed
trajectories.

Probabilistic tractography algorithms (Friman et al., 2006; Hagmann et al., 2003;
Jones, 2008; Lazar et al., 2005) have been developed to overcome the shortcomings
of deterministic methods. The aim of probabilistic tracking methods is to provide a
natural approach for modelling uncertainty and generate multiple curves originating
from a seed point. Probabilistic methods have also been developed to attempt to
resolve fibre crossings at the intravoxel level under looser constraints, for example
in terms of stopping criteria, allowing them to pass through low-anisotropy areas
and to penetrate deeper into gray matter (Behrens et al., 2003), and these methods
allow branching of white matter tracts. Generally, probabilistic tracking methods
have three stages. In the first stage, they model the uncertainty at each voxel using
a probability density function (PDF) of fibre orientations. In the second stage, the
tracking algorithm repeats a streamline propagation process many times (typically
between 100 and 10000 per seed point) from a seed point with the propagation
direction randomly sampled from the PDF of fibre orientations. The connection
probability from a seed point to a random voxel within the dataset is defined as
the frequency with which streamlines pass through the voxel, normalised for the
total number of repetitions of the streamline propagation process. Finally a global
connectivity map is estimated, using the connection probabilities between all the
voxels in the image and the seed point.

The deterministic tractography approaches have several advantages over prob-
abilistic tractography for some applications such as neurosurgery. Firstly, visuali-
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sation of the deterministic streamline trajectories is similar to the expected in vivo
white matter fibre tracts; whereas the output of probabilistic methods is a connec-
tivity map, which is not a single well-defined trajectory, but rather a spatial distri-
bution. These connectivity maps contain dense 3D volumes of potential connectiv-
ities, which cannot be easily inspected. The determination of a connectivity map
is also a time-consuming process and requires large amounts of memory. Connec-
tion probability maps derived using frequency of connection methods demonstrate
high frequency connections close to the seed point and low frequency connections
at distance from the seed point. This can lead to difficulty in interpreting tracking
results, because the derived connection probabilities are not comparable at different
distances from the seed point (Morris et al., 2008). The connectivity maps from
probabilistic tractography are no more than an indication of the number of times
that a range of trajectories pass through a voxel from the seed point. The aim of
any tractography algorithm is to reconstruct tracts that accurately correlate with
the underlying white matter pathways. Given a 3D volume of connectivity maps
with a dense map of frequent visitations, it is extremely difficult to identify the most
probable trajectory. In short, neurosurgeons are more interested to know where the
fibre pathways are located, rather than where they might be probable.

Secondly, output tracts from probabilistic methods can leak into unexpected
regions producing incorrect connections of white matter (Descoteaux et al., 2007).
These outlier bundles are also considered for the calculation of connection proba-
bility and the output map.

In this study, we present an improved tractography algorithm, which combines
the advantages of deterministic and probabilistic approaches and overcomes a num-
ber of the limitations of such techniques described above. Building on our prelim-
inary studies (Ratnarajah et al., 2009, 2010a,b), we consider the fibre pathways
of a probabilistic method from a seed point as a set of curves. We then compute
a representative skeleton curve to every anatomically distinct region from the seed
point directly from the generated curves using branch-clustering and average curves.
We define two statistical methods for computing average curves and a dispersions
measure of a collection of probabilistic tracking curve-sets.

Clustering of the branching curves is applied before computing the average curves
to deal with bimodality in the probabilistic results, i.e. the points at which the re-
sults suggest that the tracts are branching into two or more groups from a seed
point. Several fibre clustering approaches, which are fully automatic and take ad-
vantage of the similarity of the fibre paths, have been proposed (Brun et al., 2004;
O’Donnell et al., 2006; Li et al., 2010). These fibre clustering methods analyse a
collection of tractographic paths, which are generated from many seed points using
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deterministic algorithms, and separate them into clusters that contain paths with
similar shape and spatial position. In the approach described here we develop a new
clustering algorithm for estimating the branch curve-sets of generated probabilistic
curves from a seed point. Probabilistic curves generated from a single seed point
can branch into two or more main paths. We therefore consider only the spatial
positions of the curve points of the collection of curves and separate the branches
using a hierarchical distance-based clustering algorithm. Moreover, our algorithm
is computationally efficient and allows outlier detection. Branches with few fibres,
as well as the shortest and longest fibres within a branch are considered as outliers
and are excluded before calculating the average curves in a pre-processing step.
This pre-processing step is used to ensure that the branches selected for average
measures are strongly connected to cortical regions and outliers are removed. Two
different averaging methods (mean and median) are then applied for each set of
branched curves to compute representative curves. All of the branch average curves
from the seed point are concatenated to produce the final output of the improved
tractography.

We evaluate the tracking algorithm quantitatively on a hardware diffusion ten-
sor tractography phantom which simulates several complex pathway interactions
and qualitatively on data acquired in vivo from a human brain. To demonstrate
the robustness of our algorithm, we compared the resultant tracts with the ground
truth in the phantom data. To evaluate in vivo data we computed trajectories in
two well-defined white matter structures: the corpus callosum and the pyramidal
tracts. Three previously published commonly used probabilistic tracking algorithms
(a parametric, a non-parametric and a random-walk) are applied to generate nu-
merous possible tracts from each seed point.

Generally, conventional single-tensor fibre tracking approaches have difficulties
in brain regions where fibre bundles cross. In such cases, a single diffusion tensor
model is no longer valid. The development of new models based on high angular res-
olution diffusion imaging (HARDI) seeks to provide solutions to this problem (Tuch
et al., 2002; Tuch, 2004; Jansons et al., 2003; Wedeen et al., 2008). HARDI-based de-
terministic tractography and probabilistic tractography methods have recently been
published in the literature (Berman et al., 2008; Descoteaux et al., 2009; Kreher et
al., 2005; Perrin et al., 2005) and their results have shown successful reconstruction
of multiple intravoxel fibres and improved reliability of tractography. Therefore,
to improve the robustness of our tractography algorithm for dealing with crossing
fibres and to show that the proposed algorithm can be extended to techniques be-
yond the single-tensor DT model, we applied a two-tensor random-walk method to
the in vivo data.
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There is a strong clinical need for an objective mathematical framework for
quantitative analysis of fibre tracking curves. Generally, the mathematical frame-
works described in the literature to date (Maddah et al., 2008; Wassermann et
al., 2010) have aimed to facilitate subsequent clustering and group-based statistical
analysis of fibre bundles. Recently, Wassermann et al. (2010) presented a math-
ematical framework that facilitates mathematical operations between tracts using
an inner product between fibres with the aim of producing an automated clustering
method. While analysing fibre tracking curves geometrically is a promising notion,
relatively little attention has been paid to this area, with a few exceptions. Some
studies have been motivated by the problem of analysing the shapes of fibre tracts
(Batchelor et al., 2006; Savadjiev et al., 2006), presenting a geometric framework
for studying the shapes of curves in 3D. Other studies have investigated coarse
geometrical descriptors of fibre tracts, such as smoothness, curvature, torsion and
length (Basser, 1997; Ding et al., 2003). Corouge et al. (2006) proposed a framework
for quantitative tract-oriented DTI analysis that includes tensor interpolation and
averaging, using nonlinear Riemannian symmetric space. Durrleman et al. (2009)
proposed a framework where sets of curves and surfaces are modelled as currants.
This framework provides tools for computing statistics such as means and modes of
a population of shapes. However, this framework is more generic than ours and the
population data comes from different subjects. To our knowledge, this is the first
paper to describe a statistical framework for analysing probabilistic fibre tracking
curve-sets geometrically.

In this work, we introduce a quantitative analysis tool for probabilistic fibre
tracking methods, which evaluates the performance of a probabilistic algorithm and
compares the different probabilistic algorithms using the statistical framework. A
thorough quantitative performance analysis is performed on phantom data, includ-
ing a comparison of two types of average curves for the three probabilistic tracking
methods; plus FACT deterministic tracking, using two distance measures between
the results and the known true tract, from multiple seed points.

Anatomical variance has proved a useful measure to analyze variability of a
population of fibre tracking curves. These dispersion measures help to quantify the
geometric extent of each branch and show promise for future clinical application to
neurological disorders. We therefore define and estimate second order statistics of
the probabilistic curve-set using the statistical framework. The estimation is based
on local spatial positions of curves. These measures not only provide descriptive
measures of variability but also allow us to generate new data according to the
estimated variability, or to compare different probabilistic tracking algorithms on
the basis of variability.
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2. Statistical Framework

2.1. Probabilistic Population Model

Original Curves: The results of probabilistic fibre tracking algorithms, a set of
probabilistic tracking curves, are open curves which most likely represent elements
of fibre bundles. We define a statistical framework for representing, averaging and
measuring second order statistic probabilistic fibre tracking curves in three dimen-
sional Euclidean space <3.

Let Γ be a set of N probabilistic fibre tracking curves from a seed point s,
where each curve γi is defined by a set of ki ordered points in m = 3 dimensions,
represented by a ki ×m matrix.

Γ = {γi, 1 ≤ i ≤ N, γi ∈Mki,m} (1)

Here Mn,m denotes the set of all n ×m matrices. Typically N varies between 100
and 10000 in practice.

Reparameterisation: A problem with these tracking curves γi is that uniform
steps in the parameter do not correspond to uniform path distances. It is therefore
necessary to reparameterise the space curves by arc-length. This allows the look up
of a parameter value that corresponds to a desired arc-length. We therefore use an
arc-length reparameterisation method, which reparameterises the curves by placing
a high number of points at equal arc-length steps on each curve γi.

Analytically, a smooth space parametric curve is represented by a mapping
γ : I → <3 of an interval I ⊂ R into three dimensional Euclidean space <3.
Equivalently, the parameterised tracking curve γ(t) can be considered a 3-vector of
functions:

γ (t) =

 x(t)
y(t)
z(t)

 , t ∈ I (2)

In the parameterised curve γ(t), parameter t represents the index of the sequence
of points and the curve γ(t) represents the fibre tract trajectory in 3D space.

Population Model: We model the parametric fibre tracking curve-set as an
independent realisation of a stochastic process Γ(t) that has mean E {Γ(t)} = µ(t)
and variance var {Γ(t)} = σ2(t). A random curve from the population may then be
expressed as

Γ(t) = µ(t) + ε(t) (3)

where ε(t) are independent and E {ε(t)} = 0.
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For statistical analysis, we assume a collection of n probabilistic fibre tracking
curves, Γ, each curve γi is parameterised at points t1, t2, · · · , tmp(i), where mp(i) is
the maximum number of points of curve γi. The jth point on the ith curve will
be denoted by γi(tj). The first points on the curves (t1) are seed points, which are
same for all curves γi in Γ. The length of the space curve between points γ(tk+1)
and γ(tk) is given by len = ‖γ(tk+1)− γ(tk)‖ where len is the same for all curves
γi and all pairs tk and tk+1. In our implementation, we use a constant arc-length
step len based on the average arc-length of the set of curves in the collection Γ to
reparameterise the curves.

2.2. Distances between Curves
The solution of statistical problems by a decision rule based on the notion of

distance is a well-known methodology. Two pair-wise distances d between curves γi
and γj were implemented here:

The Hausdorff distance:

dH(γi, γj) = max(dH′(γi, γj), dH′(γj, γi)) (4)

where dH′ is the asymmetric Hausdorff distance.

dH′(γi, γj) = maxx∈γiminy∈γj ‖x− y‖ (5)

‖.‖ is the Euclidean norm and ordered pair (γi, γj) indicates an asymmetric distance
from γi to γj.

The average closest distance:

dA(γi, γj) = mean(dA′(γi, γj), dA′(γj, γi)), (6)

where dA′ is the asymmetric average closest distance.

dA′(γi, γj) = meanx∈γiminy∈γj ‖x− y‖ (7)

These measures are clearly applicable to probabilistic tracking curves, and can
be implemented accurately by making comparisons of distances between the points
in the sequences which represent the curves.

Distance Matrix: We compute the distance between each pair of curves as
described and assemble the measures to create a distance matrix D. Given a pair-
wise distance d and a fibre γi, d is computed between γi and γj for all γj in Γ, j 6= i.
The matrix D is defined which organises the pair-wise distances d between each pair
of curves.

DistanceMatrix D = (dij), i, j = 1, · · · , n. (8)

The matrix D is a real positive symmetric matrix with zeros along the diagonal.
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2.3. Average Curves

We consider a representative curve from a given collection of curves in space as
the average curve of the collection. This paper explores a few of the many possible
definitions of average curves, and the situations in which they might be relevant.
Clearly the representative curve needs to be as close as possible to all the curves in
the collection. This can be achieved by ensuring that the average curve is that which
minimises the distance from all the other curves. Two types of average measures
are implemented for this work.

Mean Curve: For non parametric estimation of the overall mean curve µ(t),
we use the least squares estimate of µ, which is obtained by averaging the data
values separately at each parameter value t.

µ̂(t) =
1

p(t)

p(t)∑
i=1

γi(t) (9)

where p(t) is the number of curves involved in the calculation at t. The mean
curve µ̂(t) = γmean is the centroid of the underlying probability distribution of the
probabilistic tracking method.

Median Curve: The median curve is selected from the collection as the curve
which differs least from all other curves. It is better described as a median, because
in the scalar case, there is an interval of real numbers rather than a collection of
curves, the one with least maximum variation from the others is midway between
the maximum and the minimum.

It may not always be necessary to construct a new average curve to represent
the set. If there are a large number of curves it may be possible to select the curve
which differs least from the other curves.

In our implementation, we first compute the distance matrix D quantifying
similarities between pairs of tracts. We then use the matrix D to identify the best
curve(s) from the set of likely curves in the set Γ. We use a hierarchical algorithm
to find the median curve(s). The steps below outline the procedure for generating
the median curve of a curve-set using a distance measure d.

Step 1: Select the maximum value in the matrix D and find the correspondent
curves γC1 and γC2.

Step 2: Remove the two curves γC1 and γC2 from the set and reorganise the
matrix.
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Step 3: Repeat steps 1 and 2 for every remaining curve-set and successively
remove the curves into a hierarchy of smaller and smaller numbers of
curves until one or two curves remain in the set.

Step 4: If the number of resultant curves is two, the mean curve approach
described above is applied to the resultant curves in order to produce
a single median curve, else the one remaining curve is selected.

2.4. Dispersion Measures

Generally a measure of dispersion, the variance σ2(t) of the parametric curve-set
Γ(t) is defined as:

σ2(t) =
1

n

n∑
i=1

‖γi(t)− µ̂(t)‖2 (10)

where σ(t) provides the local standard deviation values of the curve-set Γ(t) at each
parameter value t. Globally, we define the standard deviation STD(Γ) as a single
value of a probabilistic fibre tracking curve-set Γ using different distance measures
d as

STD(Γ) =

√√√√ 1

n

n∑
i=1

d(γmean, γi)
2 (11)

where γmean is the mean curve of the curve-set Γ and d(γi, γj) is a distance measure
between curves γi and γj.

3. Fibre Tractography Algorithm

3.1. Algorithm

The concept of our algorithm is illustrated by Figure 1 which shows the output
of each stage of the algorithm. We first apply a probabilistic algorithm to generate
a number of tracts from a seed point; these tracts, considered as curves, are divided
into two groups, forward and backward from the seed point; each of the two sets of
curves are then separated further using a clustering algorithm to find all the branch
sets. Curves that are very short or long compared to the average arc-length of curves
of each branch and curve branches with small number of tracts are excluded from
the set. Finally, the average curve methods were applied for each set of branched
curves from the seed point and the resultant curves concatenated. The tractography
algorithm describing these steps is given by Algorithm 1.
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Figure 1: The six stages of our improved tractography algorithm illustrated using images of a
physical diffusion tensor tractography phantom: (a) seed point, (b) probabilistic tracking from
the seed point, (c) forward and backward tracts, (d) clustered branches, (e) branches after pre-
processing and (f) average curves.

Algorithm 1.The improved tractography algorithm.
Input: A DTI volume, a probabilistic method, a seed point region (ROI) and
predefined parameters: l for branching and r, t, c for pre-processing.
Output: Set

{
γs1 , γs2 , · · · , γsreg

}
, where each γsk is a concatenated well defined

single curve for all the possible connection from the seed point sk and reg is the
total number of seed points in the ROI.
Repeat

1. Probabilistic Tracking: Using a given probabilistic tracking method, gen-
erate N tracts as a set of curves Γ from a seed point s.

2. Forward and Backward Tracts: Divide the curves Γ based on their direc-
tion into forward and backward from the seed point, starting with the primary
vector sign:

Γ1 =
{
γ1i , 1 ≤ i ≤ N, γ1i ∈Mk1i ,m

}
and Γ2 =

{
γ2i , 1 ≤ i ≤ N, γ2i ∈Mk2i ,m

}
,

where ki = k1i + k2i − 1
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3. Estimate Branches: Define the branch sets Γ1,p, p = 1 · · ·P and Γ2,q, q =
1 · · ·Q for Γ1 and Γ2, using the clustering algorithm for estimating branches
described below (threshold l), where P and Q are the number of branches.

Γ1,p =
{
γ1,pi , 1 ≤ i ≤ N1,p, γ1,pi ∈Mk1,pi ,m

}
,
∑
N1,p = N

Γ2,q =
{
γ2,qi , 1 ≤ i ≤ N2,q, γ2,qi ∈Mk2,qi ,m

}
,
∑
N2,q = N

4. Pre-processing (Outlier Removal): Delete branch set if number of curves
in branch < r% of N (very low cardinality) and delete curves in every branch
set if the arc-length of the curve < t% or > c% of the average arc-length of
the curves ( very short curves and very long curves) in the branch.

Output:Γb =
{
γbi , 1 ≤ i ≤ Nb, γbi ∈Mkbi ,m

}
, b = 1, · · · , B

where
∑
Nb ≤ N and B ≤ P +Q

5. Average Curves: Estimate the average curve γbavg for each branch set Γb
using an average curve algorithm as described above.

6. Output from the Seed Point: Concatenate each resulting average curve
γbavg giving output γs from the seed point s.

Until all the seed points from the ROI have been processed.

3.2. Estimation of Branching Curves

Probabilistic tractography curves result in a set of streamline curves connecting
a seed point to distinct anatomical regions. Before the estimation of branches, we
separate every curve into two curves based on the seed point (forward and backward)
and therefore the whole set of curves are divided into two sets of curves, which share
the same starting point (the seed point). We developed a distance-based divisive
hierarchical clustering scheme that uses the distance matrix D to find all branches
in a curve-set, described by the following steps.

Step 1: The clustering algorithm begins with all the curves γi in Γ as a single
cluster.

Step 2: Compute the distance matrix D for the curve-set.
Step 3: Select the maximum value in the matrix D and find the corresponding

curves γC1 and γC2.
Step 4: Divide the curves γi, i 6= c1, c2, into two clusters, one related to curve

γC1 and the other related to curve γC2 using a measure
min(d(γi, γC1), d(γi, γC2)).
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Step 5: Repeat steps 2, 3 and 4 for every cluster and successively divide the
curves into a hierarchy of smaller and smaller clusters until the maxi-
mum value of the matrix < l, where l is a threshold to be chosen.

Only one parameter, the threshold l, has to be selected manually. A large value
of l results in a small number of branches, whereas a smaller value will result in
a larger number of branches. The optimal parameter l depends on the acquisition
parameters of the data set and on the choice of the distance metric. The symmetric
average closest distance dA provides a global similarity measure since it integrates
closest distances along the whole curve. The symmetric Hausdorff distance dH is a
worst-case distance. It is a useful metric to reject outliers and prevents the algorithm
from clustering curves with high dissimilarity.

4. Methods

4.1. Probabilistic Tracking Method

We investigated the use of three different probabilistic algorithms in this work.
The first algorithm was the wild-bootstrap fibre tracking (Jones, 2008) based on the
model described in Whitcher et al. (2008). 1000 tensor volumes were generated by
fitting the diffusion tensor and a simple 4th order Runge-Kutta streamline method
was used to propagate each of the 1000 volumes to generate 1000 tracts from each
seed point. The second algorithm was the Bayesian probabilistic tractography algo-
rithm described in Friman et al. (2006). 1000 streamlines were generated from each
seed point using the diffusion model, parameter values and likelihood calculations
from Friman et al. (2006).

The final algorithm was that of Hagmann et al. (2003) who proposed a random-
walk model of a particle diffusing in a DT field Dα to assess uncertainty in tractog-
raphy described by

xn+1 = xn + µΩn (12)

Ωn = λdn + Ωn−1, (Ωn · Ωn−1) ≥ 0 (13)

dn = Dα
nrn (14)

Here, {xn} are a sequence of points on the fibre path, rn are random vectors
uniformly distributed over a unit sphere, Ωn is a weighted sum of the random vector
di, µ is step size and α and λ are parameters of the algorithm. The algorithm was
repeated 1000 times from each seed point with α = 2 and λ = 1.

We further considered the performance of our tracking algorithm when two ten-
sors are allowed to cross within a single voxel. The signal attenuation equation for
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a generalised two-tensor model can be described by a weighted sum of two Gaussian
functions Tuch et al. (2002). We used the Levenberg-Marquardt non-linear least
squares algorithm to fit a mixture of Gaussian densities to the data. The random-
walk algorithms described above are then applied to a two-tensor model to generate
probabilistic curves. The probabilistic two-tensor tracking method starts from a
given starting position and estimates one trajectory for each of the two tensors.
This generates two trajectories per seed point. The random-walk algorithm is then
used to propagate the trajectories to the next position. We use the two tensors per
position and also the two principal eigenvectors to determine which of the trajecto-
ries (if any) should be followed. For each position, we choose the diffusion tensor,
which has the ’most similar’ principal eigenvector to the principal eigenvector calcu-
lated from the previous position. The most similar eigenvector is the one which has
the smallest angular difference. The two-tensor random-walk algorithm was then
repeated 1000 times from each seed point.

4.2. Data Acquisition

Physical Phantom: Diffusion-weighted data were acquired from a physical
phantom (Poupon et al., 2008) on a 3T MRI system with 3 × 3 × 3 mm3 voxel
resolution, b value=1500 s/mm2 and 65 directions (1 un-weighted and 64 diffusion
directions). A single-shot diffusion-weighted twice refocused spin echo EPI pulse
sequence was used to perform the acquisitions, while compensating for eddy currents
to the first order. The acquisition parameters were field of view FOV=19.2 cm,
image size 64×64×3, repetition time TR=5 s and echo times TE=94 ms providing
isotropic resolution.

We applied the average curves algorithm to the phantom data, using the three
single-tensor probabilistic tracking methods, described above, from 16 pre-defined
seed positions with 1000 iterations. In the case of the median curve, we used
both symmetric distance measures. The average closest distance was used in the
distance matrix D for the clustering algorithm to find all branch sets. The same
fibre structures were then extracted using the FACT deterministic algorithm (Mori
et al., 1999) using the same parameters (step size = 1 mm and curvature threshold
= 600).

In Vivo Data: Diffusion weighted images were acquired from a healthy human
on a whole-body 1.5 Tesla scanner using a spin-echo EPI pulse sequence with 64
diffusion encoding gradients with a b-value of 1000 s/mm2 evenly distributed in
space and 7 images without any diffusion weightings (TE = 100 ms, TR = 12
s, 128 × 128 image matrix, FOV = 220 × 220 mm2). Sixty slices were acquired
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with 2.4 mm thick interleaved slices (no gap), which covered the whole brain with
2.4× 2.4× 2.4 mm3 spatial resolution.

Random trajectories were initiated from a seed point in the corpus callosum using
single-tensor and two-tensor random-walk probabilistic methods and two points in
the right/left internal capsule using wild-bootstrapping method with 1000 iterations.
The clustering algorithm was applied to the curves using the average closest distance
for estimating all of the branch-sets in each seed point. The mean curve method
was applied for each set of branched curves from the seed points.

4.3. Quantitative Analysis Tool

We have developed a suite of tools for quantitative analysis of fibre tracking
curves, especially for probabilistic methods. The tools are designed to provide
quantitative analysis of fibre curves generated from a tractography algorithm using
the curve-based statistics. Here we describe analysis of performance measures of a
tracking algorithm and the variability of a probabilistic tracking curve-set.

Performance Analysis:Performance measures (ξ) were calculated as the error
in tract estimation, which is defined by the distance d between the ground truth
curves γT of the ideal trajectory and the resultant curves γavg using the average
curve of a probabilistic tracking method from a seed point.

The phantom data was used to test the performance of the deterministic and
the average curves of three probabilistic tracking algorithms as the ground truth
is known (http://www.lnao.fr/spip.php?article157). The ground truth curves and
the average curves of the most probable branches of the probabilistic methods and
the FACT method from the 16 seed points of the phantom data were assessed.
The two most probable branches from the forward and backward curve-sets were
selected from the set of different branches from the seed point as those containing
the highest number of curves. The asymmetric average closest distance dA′ from γs
to γT , and the asymmetric Hausdorff distance dH′ from γs to γT were used. Mean
and standard deviation of ξs are reported for each method.

Statistical Analysis: Statistical analysis was carried out using the Minitab-
16 statistical package. An upper-tailed student t-test was used to compare the
performance measures between the different tracking methods described above. If
variance was unequal, the t test used independent variance. The level of statistical
significance was set at p < 0.05.

Analysis of Variability: Here we compare the dispersion measure of the three
probabilistic methods curve-sets, which were generated from a range of seed points
and propagated in different regions in the phantom data. The standard deviation
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values STD (average STD of the forward and backward branches) are calculated
from the most probable branches of the three probabilistic methods from the same
16 pre-defined seed points of the phantom data using the symmetric average clos-
est distance (dA), asymmetric average closest distance (dA′), symmetric Hausdorff
distance (dH) and the asymmetric Hausdorff distance (dH′) . Asymmetric distances
were computed from the average curve γavg to a curve γi in the curve-set Γ.

5. Results

5.1. Phantom Data

Qualitative Results: Figure 2 shows typical results of our tractography al-
gorithm for each seed point of the phantom data. The mean and median curve
resulting from the most probable branches of the Bayesian and wild-bootstrapping
algorithms are illustrated in the figure. Only the most probable branch average
curves are shown to provide a clearer view. The average curve results are consis-
tent with the ground truth, except where some paths meet crossing regions. A
comparison of our tracking method with an implementation of the FACT determin-
istic method using the same seed points shows that our algorithm is more robust
in the presence of complex pathways. The FACT trajectories show unusual tract
behaviour, displaying sharp bends and loops, while the average curve trajectories
generally do not. The lengths of the resulting FACT tracking curves were also
smaller than the average curve lengths, i.e. the average curve pathways propagated
further than the FACT tracts. The mean curve tracts are smoother than the median
curves and generally show fewer sharp bends in the tracts. These results show how
our tractography algorithm is able to give a clear output of fibre bundles from cor-
responding seed points in a way that is not possible with the output of probabilistic
tracking methods. We estimated the computational time for clustering of each seed
point. For the clustering experiments considered in Figure 2, our approach required
less than an average of 3 minutes of processing time (Intel(R) Duo-E4400 CPU and
Linux OS).

Performance Analysis: Table 1 presents mean and standard deviation val-
ues for the performance measures (ξ) in mm for the 16 pre-defined seed points of
the phantom data. Mean curves, median curves using symmetric average closest
distance (A), and median curves using the symmetric Hausdorff distance (H) of
three probabilistic tracking methods and FACT curves are considered to estimate
the performance measure ξ.

The statistical analysis results show that the average curve methods are more ac-
curate than the FACT deterministic tracking method with significantly lower errors
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Figure 2: (a) Ground truth and seed points overlaid on a FA map. Results of (b) FACT (c) mean
and (d) median curves of wild-bootstrapping and (e) mean and (f) median curves of Bayesian
tracking.
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d F Mean Curve Median Curve(dA) Median Curve(dH)
W B R W B R W B R

dA′ 6.25 2.82 2.95 3.18 3.08 3.31 3.67 3.51 3.96 4.08
±7.6 ±1.3 ±1.6 ±1.9 ±0.8 ±1.6 ±2.1 ±2.1 ±1.6 ±2.9

dH′ 17.6 8.75 9.74 11.07 8.73 11.04 13.04 11.07 11.08 14.63
±27.8 ±8.3 ±8.2 ±10.1 ±7.6 ±10.2 ±11.4 ±11.1 ±11.1 ±14.1

Table 1: Mean and standard deviation values for the performance measures (ξ) in mm (F -FACT
method, W-Wild-bootstrap, B-Bayesian, and R-Random-walk methods).

(FACT vs Wild-bootstrap mean curve with dA′ , p = 0.048). Performance measures
of mean curves for the wild-bootstrap, Bayesian and random-walk are not signifi-
cantly different (Random-walk vs Wild-bootstrap mean curve with dA′ , p = 0.269).
However, the individual performance measures of wild-bootstrap results are better
than the other two probabilistic methods in all cases. The mean curve results are
considerably less than the results of the two distance median curves (Bayesian me-
dian curve (dH) vs Bayesian mean curve with dA′ , p = 0.042) and the median curve
results using the symmetric average closest distance are not significantly different
from the median curve results using the symmetric Hausdorff distance (Random-
walk median curve (dH) vs Random-walk median curve (dA) with dA′ , p = 0.325).
Here we used asymmetric measures to estimate the error, in order to avoid the ac-
cumulation of errors due to early stopping curves or mis-directed paths. Therefore,
the distance measurement is calculated using the distance between the resulting
curve to the true curve.

Analysis of Variability: Figure 3 shows the comparison of the standard devi-
ation (STD) of the three probabilistic tracking curves using four different distance
measures. Considering the scatter plot of standard deviation for the 16 seed points,
there is no significant difference between the three tracking methods and it is very
difficult to claim that a particular method generates a higher or lower dispersion.

However, generally, the standard deviation increases with the arc-length (or
average arc-lengths of a curve-set) of the mean curve and number of curves in the
curve-set for all three methods. We observed from Figure 3 that the curve-sets
(initiated from seed points 3, 4, 5, 6, 7, 9, 11, 12, 15 and 16) have larger standard
deviations than the short length curve-sets (initiated from seed points 1, 2, 8, 10,
13 and 14) with some exceptions for seed points 11, 16 and 3. Curves originating
from seed points 11 and 16 terminate early and the curves from seed point 3 are
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Figure 3: Comparison of the three probabilistic tracking curves with the standard deviation of
the most probable curve-set from 16 seed points using (a) dA′ (b) dA (c) dH′ and (d) dH distance
measures.

straight, with little deviation.
For this experiment, we generated the same number of curves (1000) from all

seed points using all three probabilistic methods. We used the same threshold l
for all the methods and all seed points. However, the number of branches and the
number of curves in a branch varied. The random-walk method produced a very
high number of branches compared with the other two methods.

In most cases, the number of curves in the most probable branch decreases
with the number of well defined branches from the seed point. Generally, standard
deviation decreases with seed point and tracking method when the most probable
curve-set of the seed point contains low number of curves (not shown in the Figure3).

5.2. In vivo Data

Corpus Callosum: Figure 4 shows typical results obtained using the single-
tensor and two-tensor random-walk methods from a seed point in the splenium
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Figure 4: The results at different stages of improved tractography algorithm using single-tensor
(left) and two-tensor (right) random-walk tracking obtained from the seed point placed in the
corpus callosum: (a), (b) generated tracts (c), (d) forward and backward tracts (e), (f) clustered
tracts and (g), (h) mean curves.
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Figure 5: Improved tractography results using wild-bootstrapping obtained from a seed point
placed in the left /right cortico-spinal tract. (a), (c), (e), (g) clustered trajectories and (b), (d),
(f), (h) mean curves in front view and lateral view respectively.

of the corpus callosum overlaid on an FA map. The majority of inter-hemispheric
pathways are in the corpus callosum, which has the highest anisotropy and moderate
curvature. The desired results observed from performing clustering of the corpus
callosum are its division into anatomic regions according to the fibre projections.
Mean curves of the clusters show representative connections from the seed point to
different cortical regions.

Multi-tensor probabilistic tractography can be used to visualise fibre tracts in ar-
eas of multidirectional fibre architecture in the brain. Such areas are problematic for
single-tensor tractography methods because the single-tensor model cannot describe
the complexity of the fibre architecture. Our average curve results of two-tensor de-
terministic streamline tractography can accurately identify fibre bundles consistent
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Figure 6: Improved tractography results using wild-bootstrapping obtained from a seed point
placed in the left/right cortico-spinal tract from a front view. (a) Clustered trajectories, (b) mean
curves, (c) mean curves of branches which contain more than 20% of the total number of generated
curves and (d) mean curve of most probable branches.

with anatomy, and detect more connected areas than single-tensor streamline trac-
tography. Using more than one seed point will increase the number of branches and
average curves. However, we have illustrated the results using a single seed point in
order to provide a clear view of the average curves and to simplify the evaluation.

Corticospinal Tracts: The corticospinal tracts are a part of the projection
fibres system which pass through the internal capsule and form the corona radiata.
In order to evaluate the average curves method for probabilistic tracking, the mean
algorithm was applied to fibres of the internal capsule, with estimated fibre pathways
generated from two seed points using wild-bootstrap tracking. Figure 5 shows the
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estimated corticospinal tracts obtained from a seed point placed in the left/right
cortico-spinal tract using wild-bootstrap tracking. The generated curves propagate
inferiorly through the internal capsule and the results show that our average curves
properly reconstruct the fibres to the different motor areas.

Figure 6 illustrates the combined results of the left and right corticospinal tract
from a front view. The clustering results show that the tracts are grouped into
different plausible bundles. The output of the wild-bootstrapping method shows
that a number of deterministic curves erroneously cross the pons and project into
the contralateral hemisphere, while a few trajectories (out of the thousand) crossed
the corpus callosum. Figure 6 (c) shows the mean curves of branches which con-
tain more than 20% of the total number of curves in each forward and backward
curve-set and Figure 6(d) shows the mean curves of the most probable branches.
Anatomically implausible pathways are mostly represented by branches which con-
tain low numbers of curves. When thresholded at > 20% of the number of curves,
the mean curves of the most probable branches show a prominent representation of
the most probable path of the probabilistic tracking algorithm.

These examples also show how a framework for average curves of probabilistic
tracking is able to handle splitting fibre bundles in a way that is not possible with
conventional deterministic tracking.

6. Discussion

DTI tractography is used to investigate important questions about how differ-
ent anatomical regions of the brain are connected and how these connections alter
during development or the progression of disease. Deterministic and probabilistic
tractography methods have advantages and disadvantages depending on the algo-
rithm, data, and the underlying diffusion model they use. In this paper, firstly
we have described an improved fibre tractography method, which results in a sin-
gle well-defined trajectory for every strong anatomically distinct connection from a
seed point, by taking advantage of both deterministic and probabilistic algorithms
using a statistical framework. Secondly, the statistical framework has been used to
develop a quantitative analysis tool for probabilistic tracking methods.

The statistical framework described here provides a means of statistically aver-
aging the curves of a probabilistic distribution. An average, central tendency of a
data set is a measure of the middle or expected value of the data set in mathematics.
The most common method is the mean. The median is an alternative approach to
the mean for estimating the average of a set of curves. Dispersion is a key concept
in statistical thinking; here we have defined a method to measure the variability of
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curves from a seed point. The fibre tracts are mostly open curves and the curves
are represented numerically as a sequence of points on the curves. Slightly longer or
shorter curves should not be regarded as significantly different. The point-sequences
are sufficiently dense such that any reasonable interpolant between the points gives
essentially the same shape of curve. A natural parameterisation is given by arc-
length.

It is often difficult to evaluate the merit of different fibre tracking techniques
for reconstructing fibres and the best approach can depend on the application. De-
terministic methods are simple and fast and therefore may be used interactively.
However, with such approaches, a single error can send the subsequent trajectory
off track resulting in an abrupt outcome. Probabilistic methods consider this uncer-
tainty in fibre orientation when calculating estimates of the fibre tracts but it can be
extremely difficult to find the most probable path from the output of probabilistic
methods. It is also not easy to understand the anatomical connections directly from
the connectivity maps. The average curves approaches that we propose here provide
not only an estimate of the representation of probabilistic curves but also takes into
account an additional measure of uncertainty by considering every possible con-
nection. The results of our tractography approach also shows that the algorithm
handles the branching of tracts correctly and the output of the algorithm addresses
the challenges associated with the results of traditional probabilistic methods. The
average curves have also been shown to be good representations of optimal fibre
paths of strong anatomical connections using both phantom and in vivo data.

This paper has also presented new techniques for clustering probabilistic curves
in 3D, to find anatomically distinct branches and remove outlier curves from a seed
point. We found that the use of hierarchical clustering using a fibre similarity mea-
sure based on the distance measure between fibres gave the best results. Here, we
used four different distance measures between curves and we believe these distance
measures are a good approximation of the notion of similarity in the domain.

The overall shape of the fibre tract trajectories has been shown to correspond
with known anatomy, providing quantitatively useful data. However, there are con-
ceptual and practical issues that must be understood when choosing this approach.
The results of our average curves approach depends on the probabilistic methods
which we applied. The probabilistic methods still suffer from the general problems
of tractography, relying only on the overall shape of trajectories gives an inherent
degree of protection against the effects of noise and partial volume. Multi-tensor re-
construction techniques can be used to resolve multiple intra-voxel fibre populations
corresponding to known fibre anatomy (Tuch et al., 2002). We have therefore eval-
uated our tractography algorithm using a two-tensor random-walk method, which
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accurately identifies fibre bundles consistent with anatomy that were not detected
by single-tensor algorithms.

The tractography algorithms that we describe here are fast and relatively easy to
implement. The computational cost of this algorithm can vary widely; depending
on the resolution of the data set, step size and stopping criteria, seed point and
the algorithm parameters supplied by the user. However, generally, the averaging
methods are significantly quicker than the time for generating all possible tracts
using a probabilistic method from a seed point. Compared with the mean curve
method, the median curve method has a higher computational cost. One limitation
of our study is that we use some semi-automated parameters to identify the short
curves and separate the curves from generated curves. Threshold parameters, step
length, seed ROIs, and other parameters could be optimised to provide the most
faithful reconstruction of the ’gold standard’ average curves.

The choice of ’which type of average is good for a particular problem domain’
is heavily dependent on the semantics of the domain. The semantics of the domain
may well lead to a description of the curves in terms of their feature structure. If
each candidate curve is parsed to give a description in terms of features, then it
is possible to average the numerical descriptions/coefficients of those features and
then synthesise the curve which has that average description. Therefore, feature-
based averaging is a possible option for calculating the average measure, and this
is a subject for future work.

Quantitative analysis is a powerful tool for evaluating the performance of fibre
tracking algorithms. The accuracy of fibre tractography is influenced by the dif-
fusion tensor measurement’s sensitivity to image noise and various other factors.
Thus, probabilistic tracking methods may result in deviation from the true fibre
tract path and therefore lead to erroneous estimates of connectivity. Several studies
(Lazar et al., 2003b; Tournier et al., 2002)have investigated the effects of image
noise, tensor anisotropy, step size, and tract geometry on the accuracy of determin-
istic tractography algorithms. However no error analysis for probabilistic methods
has previously been reported in the literature. We have used average curves as a tool
to analyse errors from three different probabilistic methods. In this study, a system-
atic comparison and analysis of variability has been carried out for the curve-sets of
three probabilistic methods using different distance measures of standard deviation.
The standard deviation increased with the arc-length of the mean curve and number
of curves in the curve-set, as expected, but there was no significance difference in the
probabilistic algorithms. However, if issues such as bimodality in the probabilistic
tracking results are adequately dealt with, such that the average tracts (mean and
median) provide a robust result for a given seed point and distance along the tract,
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then the work presented here could provide a useful method for summarising the
quantitative results from such algorithms.
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