
Smooth Approximation and Rendering of Large Scattered Data Sets

Jörg Haber
�

Frank Zeilfelder
�

Oleg Davydov
�

Hans-Peter Seidel
�

�
Max-Planck-Institut für Informatik, Saarbrücken, Germany, {haberj,zeilfeld,hpseidel}@mpi-sb.mpg.de�

Justus-Liebig-Universität Giessen, Germany, oleg.davydov@math.uni-giessen.de

Abstract

We present an efficient method to automatically compute a smooth
approximation of large functional scattered data sets given over ar-
bitrarily shaped planar domains. Our approach is based on the con-
struction of a ��� -continuous bivariate cubic spline and our method
offers optimal approximation order. Both local variation and non-
uniform distribution of the data are taken into account by using
local polynomial least squares approximations of varying degree.
Since we only need to solve small linear systems and no triangula-
tion of the scattered data points is required, the overall complexity
of the algorithm is linear in the total number of points. Numerical
examples dealing with several real world scattered data sets with
up to millions of points demonstrate the efficiency of our method.
The resulting spline surface is of high visual quality and can be
efficiently evaluated for rendering and modeling. In our implemen-
tation we achieve real-time frame rates for typical fly-through se-
quences and interactive frame rates for recomputing and rendering
a locally modified spline surface.

CR Categories: G.1.2 [Numerical Analysis]: Approximation—
approximation of surfaces, least squares approximation, spline
and piecewise polynomial approximation; I.3.3 [Computer Graph-
ics]: Picture/Image Generation—display algorithms, viewing al-
gorithms; I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—surface representation, splines; E.4 [Cod-
ing and Information Theory]—data compaction and compression.

Keywords: scattered data approximation, least squares approxi-
mation, terrain visualization, data compression

1 Introduction

The problem of scattered data fitting is to efficiently compute a suit-
able surface model that approximates a given large set of arbitrarily
distributed discrete data samples. This problem arises in many sci-
entific areas and fields of application, for instance, in chemistry,
engineering, geology, medical imaging, meteorology, physics, and
terrain modeling. Moreover, scattered data methods play an impor-
tant role in scientific visualization to get a better understanding of
a given set of scattered data points and for subsequent treatment
needed in many applications.

In this paper we concentrate on the problem of functional scat-
tered data fitting, which can be described as follows: Given a finite
set of points ���	��
����������
�������
���� �!
" , where � is a bounded
domain in the plane, and corresponding values # �
$�%�&��
���� �!
" ,
find a method to construct a surface ')(*�,+-/. that meets as many
as possible of the following goals:

0 Approximation: ' should approximate the data, i.e.
'���� �
� � �213# � ���4�5�6
�� � �7
8"9� , while offering optimal ap-
proximation order

0 Quality: ' should be of high visual quality (i.e., for “smooth
data” ' should be at least � � -continuous) and have convenient
properties for further processing.

0 Usability: Large real world data sets, where " is typically at
least of order ��:�; , should be manageable.

0 Efficiency: Both the computation and the evaluation of '
should be fast and efficient.

0 Stability: The computation of ' should be numerically stable,
i.e., the method should work for any distribution of scattered
points.

0 Adaptiveness: The local variation and distribution of the data
should be taken into account.

0 Simplicity: The method should be easy to implement.

Although many approaches have been developed in the last 30
years, the literature shows that it is a difficult task to meet all of
the above goals by using one single method. In fact, the algorithms
proposed in the literature typically have at least one of the following
drawbacks: limitations in approximation quality, severe restrictions
on the number of points, limited visual quality of the resulting sur-
face, high computation times, and restrictions on the domain and
distribution of the data.

In this paper, we develop a new approach to scattered data fitting
which is based on differentiable bivariate cubic splines. We decided
to construct a smooth surface since such surfaces look more pleas-
ant and have nice properties for further processing and rendering.
The method we propose belongs to the class of so-called two-stage
methods [40]: In the first step of the algorithm, we compute dis-
crete least squares polynomial pieces for local parts of the spline '
by using only a small number of nearby points. Then, in the second
step, the remaining polynomial pieces of ' are obtained directly by
using ��� smoothness conditions. Our approach uniquely combines
the following advantages: The data need not be triangulated, the
domain � can be of arbitrary shape, no estimations of derivatives
need to be computed, and we do not perform any global compu-
tations. As a result, we obtain a fast method that is applicable to
large real world data, local data variations do not have an undesir-
able global effect, and the differentiable approximating spline is of
high visual quality. Thus, we have a fully automatic method which
is stable, easy to implement, and the local distribution and variation
of the data are taken into account.

The spline representation of our surface model allows to employ
Bernstein-Bézier techniques efficiently for evaluation and render-
ing of the spline. In contrast to previous methods for terrain visu-
alization, we render smooth surfaces and thus do not need to deci-
mate or (re-)triangulate the scattered data. Moreover, we have fast
and robust algorithms for view frustum culling and computation of
surface points, true surface normals, and texture coordinates.

2 Previous Work

In this section we give an overview on previous and related work
in the fields of scattered data fitting and rendering of large ter-
rain data sets. There are many different approaches to scat-
tered data fitting, see for instance the surveys and overview in

[19, 26, 30, 35, 40]. A very active area of research are radial basis
methods [2, 20, 35, 38]. However, these methods usually require
solving large, ill-conditioned linear systems. Therefore, sophisti-
cated iterative techniques are needed for the computation of the ra-
dial function interpolants [2]. An approach based on regularization,
local approximation, and extrapolation has been proposed in [1].

Motivated by some classic results from approximation theory,
various methods based on bivariate splines were proposed. There
are several types of splines that can be used. The simplest ap-
proach is to consider tensor product splines [13, 18, 22, 23] and
their generalizations to NURBS surfaces [37], which have impor-
tant applications, e.g., in modeling and designing surfaces. These
spaces are essentially restricted to rectangular domains. In gen-
eral, tensor product methods are straightforward to apply only for
data given on a grid. If the data points are irregularly distributed,
there is no guarantee that the interpolation problem has a solu-
tion. Also, global least squares approximation and related methods
have to deal with the problem of rank deficiency of the observa-
tion matrix. Alternatively, lower dimensional spaces and/or adap-
tive refinement combined with precomputation in those areas where
the approximation error is too high can be employed [39, 28, 45].
In [39], parametric bicubic splines possessing � � geometric con-
tinuity are adaptively subdivided to approximate 3D points with a
regular quadmesh structure. Multilevel B-splines are used in [28]
to approximate functional scattered data.

Other spline methods are based on box splines [9, 24], simplex
splines [46], or splines of finite-element type. The simplest example
of finite-element splines are continuous piecewise linear functions
with respect to a suitable triangulation of the planar domain. It is
well-known that the approaches based on piecewise linear functions
can not exceed approximation order 2. To achieve higher smooth-
ness and approximation order, polynomial patches of greater de-
gree have to be considered. In particular, there are scattered data
methods based on classical smooth finite elements such as Bell
quintic element, Frajies de Veubecke-Sander and Clough-Tocher
cubic elements, and Powell-Sabin quadratic element, see the above-
mentioned surveys and more recent papers [10, 14, 31]. In general,
these methods are local, and it is obvious that these splines possess
much more flexibility than tensor product splines. Many methods
require that the vertices of the triangulation include all data points
or a suitable subset of these points obtained by a thinning proce-
dure. Such a triangulation is not very expensive to obtain (computa-
tional cost �2� "�������"9�), but the arising spline spaces can become
difficult to deal with if the triangulation is complicated and its trian-
gles are not well-shaped. In addition, the above-mentioned methods
based on finite elements require accurate estimates of derivatives at
the data points, which is a nontrivial task by itself assuming the
data points are irregularly distributed. To overcome these difficul-
ties, global least squares approximation and other global methods
were considered, e.g., in [14, 21, 34, 46].

The basic idea of our method is related to the interpolation
scheme of [33, 32]. Essential differences are, however, that we nei-
ther triangulate (quadrangulate) the data points, nor make use of any
interpolation scheme as for instance in [10, 31, 32]. In particular,
we do not need any estimates of # -values at points different from
the given data points. Instead, we compute local least squares ap-
proximations directly in the Bernstein-Bézier form, and then settle
the remaining degrees of freedom by using the standard � � smooth-
ness conditions [16], which results in very short computation times.
Since our method does not even require a triangulation of the data
points, it is very well suited for extremely large datasets. In addi-
tion, our method allows (local) reproduction of cubic polynomials
and hence offers optimal approximation order. Theoretical aspects
of the method are treated in [11].

A large number of techniques for efficient rendering of terrain
data has been proposed in the literature. However, these techniques

usually operate on piecewise linear surface representations only.
Moreover, many of these methods are restricted to data that are reg-
ularly sampled on a rectangular grid. This kind of data is commonly
referred to as a digital elevation map (DEM) or, in the case of addi-
tional color values associated to each data point, as a digital terrain
map (DTM).

Among the early methods based on DEM / DTM data we men-
tion techniques such as clipping surface cells against the view frus-
tum for ray tracing [8], extracting feature points from the data
set by curvature analysis and constructing a Delaunay triangula-
tion [41], and using quadtree data structures to accelerate ray cast-
ing [6]. More recent approaches achieve interactive frame rates for
rather low resolution DTM by determining visible and occluded
terrain regions [7] or by exploiting vertical ray coherence for ray
casting [27]. Several methods incorporate level-of-detail (LOD)
techniques to speed up rendering. Such LOD techniques can be
embedded in multiresolution BSP trees [43] or combined with hi-
erarchical visibility for culling occluded regions [42]. However,
changing the LOD during an animation might result in visual dis-
continuities. This problem has led to the development of continuous
LOD techniques [17, 29, 15]. In [29], a continuous LOD rendering
is obtained through on-line simplification of the original mesh data
while maintaining user-specified screen-space error bounds. A re-
lated approach is proposed in [15], where additional optimizations
such as flexible view-dependent error metrics, incremental triangle
stripping, and predefined triangle counts are introduced.

The methods that do not require data to be sampled on a uniform
grid typically construct a triangulated irregular network (TIN)
from the data. A multiresolution representation of arbitrary terrain
data is presented in [5], where every resolution level consists of a
TIN that is obtained through incremental Delaunay triangulation.
The approximation error can be chosen to be constant or variable
over the data domain. The approach in [25] is similar to the one
before, but here the triangulation is computed on-the-fly, avoiding
the storage requirements of the hierarchy.

3 Construction of the Spline

3.1 Overview and Basic Idea

Many of the methods mentioned in the previous section are based
on global least squares approximation and related procedures, thus
facing the problem of rank deficiency. One possibility to overcome
this is by applying well known numerical techniques for rank de-
ficient matrices, such as singular value decomposition. However,
this procedure is very expensive for large coefficient matrices aris-
ing from the global methods and destroys their sparse structure. In
contrast, our method only relies on local least squares computa-
tions, which allows us to employ the singular value decomposition
efficiently.

Given a finite set of points ��� �
������
 � � �6
 ��� �7
8" , in a bounded
domain �	� .�
 and corresponding values # �
 � � ��
�� � �7
8" , we
first determine a suitable space � consisting of smooth bivariate
splines of degree 3 such that the total number of degrees of free-
dom (i.e., the dimension of �) is approximately " . We construct a
quadrilateral mesh covering the domain � , see Figure 1, and define
� to be the space of � � -continuous piecewise cubics with respect
to the uniform triangle mesh obtained by adding both diagonals
to every quadrilateral. We call the union of these quadrilaterals the
spline domain � . The basic idea of the method is to choose a subset�

of triangles in with the following properties:

(i) the triangles of
�

are uniformly distributed in ;

(ii) the polynomial patches '�� ����� � � � can be chosen freely and
independently from each other;

ΩQ

Figure 1: Layout of the Bézier triangle patches for an arbitrar-
ily shaped domain � of scattered data points. In addition to the
Bernstein-Bézier coefficients of the grey triangles inside the spline
domain � , the coefficients of the light grey triangles in the dashed
border cells are needed to determine all remaining triangle patches
in � by smoothness conditions. The red circle shows the position
of one of the circles � � .

(iii) if a spline ' � � is known on all triangles in
�

, then ' is also
completely and uniquely determined on all other triangles that
cover the domain;

(iv) each patch '�� � , where � � � �
has a non-empty intersec-

tion with � , can be computed using only a small number of
nearby patches corresponding to triangles in

�
.

The approximating spline is constructed in two steps. First, we
compute for every triangle ��� �

a least squares polynomial ��� �
in its Bernstein-Bézier form by using singular value decomposition
(SVD) and taking into account only points in � and several adjacent
triangles. The degree � of ��� � may vary from triangle to triangle,
though not exceeding 3, and is chosen adaptively in accordance
with the local density of the data points. We set ' ����� � on each
� � � . Then, in the second step, the remaining polynomial pieces
of ' on the triangles � � � � are computed by using Bernstein-
Bézier smoothness conditions. In order to guarantee property (iii),
it is necessary to add some auxiliary border cells containing both
diagonals to as shown in Figure 1.

3.2 The Spline Space

Our method is implemented for arbitrary domains as shown in
Figure 6. For a detailed description of the spline space and
its Bernstein-Bézier representation it is sufficient to consider the
square domain �,�
	 :
����
 .

For given scattered points ��� �
8� � � � � , �����6
 � ���
 " , we set ����� "������ and we cover the domain � with squares � � � , �
����
��
���� �!
 of edge length �,� ��� . This choice of ensures that
the dimension of the spline space approximately coincides with the
number of scattered data points. In addition, a ring of square border
cells surrounding the union � ����� � � is needed to completely
determine the approximating spline on � . A uniform triangle mesh
 (a so-called
 partition) is obtained by adding both diagonals
to every square ��� � as shown in Figure 1.

We consider the space of bivariate splines � consisting of all cu-
bic � � piecewise polynomials with respect to . It is well-known
that the dimension of the spline space � is �
! #" #$ 1 " [3].
Moreover, this space combines a number of attractive features.

First, the splines of this kind are highly flexible in contrast to, e.g.,
tensor product splines [13]. Second, the comparatively low degree
allows fast and efficient computation of the approximating splines.
Third, the approximation order of the space � is optimal [3], i.e.,
any sufficiently smooth function can be approximated by a spline
' � � with the error � �%��& � , which is the best possible approxima-
tion order for piecewise cubics.

For computing the cubic patches of the approximating spline,
we use the well-known Bernstein-Bézier representation of a cubic
polynomial ��'� defined on a triangle � �
	 t (6
 t �
 t
 � � :

� '� � u � �)* +�* ,�+.-�/�+102/�+.34, '
5 +�6 '� � u �.7 +
 u � � � (1)

Here

5 +�6 '� � u � (� $98: (;8 : � 8 :
 81<
+.-(� u � <

+10
� � u � <

+.3

 � u �

are the ten Bernstein basis polynomials of degree $, where

<�= � u �
?>���:
 ��
A@ , are the barycentric coordinates of u with re-
spect to � . The 7 + � . are called Bernstein-Bézier coefficients
of � and represent the local degrees of freedom of the polynomial
patch.

The advantages of the Bernstein-Bézier techniques include
the stability of the Bernstein-Bézier basis, easily implementable
smoothness conditions (see Section 3.4 below), and an efficient al-
gorithm for the evaluation of the spline and its corresponding nor-
mal (de Casteljau algorithm).

3.3 Adaptive Least Squares Approximation

We start our algorithm by choosing a subset
�

of the triangles in
as in Figure 1 and initial circles � � , � � �

, with radius B& � and
midpoint at the barycenter of � . This choice of the circles ensures
that the domain � is completely covered by the union of the circles
� �$
 �3� �

. In the first step of our algorithm we determine the
polynomial pieces of the approximating spline ' on the triangles
of
�

. To this end we compute
 ��@ different local discrete least
squares approximations for bivariate polynomials by using singular
value decomposition.

Since we treat scattered data, there is in principle no restriction
on the number C of points within a particular circle � � . However,
both too few and too many points are not desirable. Therefore,
we use the initial circle only if C satisfies D min E C E D max

with D min
2D max chosen as described below. Thus, two different
situations that require further processing can occur:

1. the number of data points within ��� is too large: C�FGD max;

2. the number of data points within � � is too small: C�HGD min.

In the first case (C�FGD max), we thin the data inside of � � down
to at most D max points. This is done by sorting all data points from
within � � into an auxiliary regular grid, which is constructed in
such a way that at most D max grid cells lie inside of � � . Then we
choose the most central data point from each non-empty grid cell
to be taken into account for computing the local polynomial patch.
Such thinning of the data is justified by the assumption that unrea-
sonably large sets of local data points carry redundant information.
By thinning the data points, we avoid expensive computation of
SVD for large matrices.

In the second case (CIHJD min), we simply increase the radius
of � � until at least D min scattered points are inside of ��� . The pa-
rameter D min controls the minimal local approximation order of the
spline surface, while D max acts as a balancing parameter between
detail reproduction and overall smoothness. In order to locally re-
produce at least linear functions in the areas of very sparse data, we

choose D min � $. Since we need at least 10 scattered data points
to fit a cubic polynomial, we require D max � ��: . In our tests, we
found a good heuristic choice to be @ : E D max E�� : .

The process of finding the data points that lie inside of a given
circle � � is accelerated using an additional uniform grid data struc-
ture � constructed during the initial input of the data. This grid cov-
ers the domain � and its resolution is chosen such that an average
number of � data points lie within each grid cell. By experiment
we found that values of ��: E � E @6: lead to a reasonable speed
up. Every grid cell is assigned a list of the data points inside that
cell. Thus, we can reduce the number of point-in-circle tests sig-
nificantly by considering only those data points, which are associ-
ated to the cells of � partially or completely covered by � � . These
grid cells can be determined efficiently by using pre-computed two-
dimensional bit masks that depend on the radius of � � and the po-
sition of its midpoint relative to the grid cells of � .

The above procedure determines for each ��� �
a set of data

points ���� �
��� � � , � �&��
 � ���!
�C , that is either the set of all scattered
points lying in the circle ��� , or a subset of it obtained by thinning.
Figure 4 shows some examples of such sets of data points. We now
consider the system of linear equations

)* +�* , �
5 +�6 �� ���� �
��� � �.7 + �	�# �
 � � ��
 �����!
�C
 (2)

where the �# � are the # -values at points ����	�

���� � and � is the local
degree of � � � � � E $ � . Denote by � � the matrix of the system (2).
The number D � of unknown coefficients 7 + depends on � and is
equal to 10, 6, 3, or 1 if � is 3, 2, 1, or 0, respectively. Depending
on C , we initially choose � so that C � D � . If, for instance,C � ��: , we choose � � $.

To solve (2) in the least squares sense, we compute the sin-
gular value decomposition � � �������� , where � �&.�� 6 ���
and �3� .

���;6 ���
are (column-) orthogonal matrices and � �

diag ��� �
 � � �7
�� ���
� is a diagonal matrix containing the singular
values � � of � � � � �5�6
�� � �7
2D � � . We use the algorithm given
in [36] for the computation of the SVD. Since the dimension of � �is at most D max � � : , we compute the SVD for small matrices only,
making this step fast and robust. The least squares solution of (2)
can be efficiently computed as 7 ��� �"! �#� � �# , since the inverse
of � is again a diagonal matrix with reciprocal diagonal elements.

In general, the condition number of the system (2) is given by
the ratio $�%'&��(�)�.� � �*$,+.-;�(�)�.� � . If at least one of the singular
values � � is smaller than a prescribed bound / cond, i.e., the points
����	��
������� lie close to an algebraic curve of degree � , we consider
the system (2) to be ill-conditioned and drop the degree � of the
least squares polynomial. If the initial degree was � � $, this
means that we consider the system (2) once again, but this time
for quadratic polynomials, i.e., � � @ . If the system (2) for � �J@
is ill-conditioned again, we drop the degree further down to � � �
or even � �&: . The bound / cond is obtained from a user-specified
condition number 0 : / cond (�1$�%)& � ��� � � �(0 . Extensive numerical
simulations show that the quality of the resulting spline surface is
quite sensitive to the choice of 0 , see also Figure 5. If 0 is chosen
too high, the spline patches constructed over the triangles in

�
tend

to be of a higher degree. Although this behavior can reduce the
average approximation error at the data points, our tests show that
individual data points may exhibit a larger approximation error. On
the other hand, if 0 is chosen too low, more and more spline patches
possess a lower degree, thereby decreasing the local approximation
order of the spline. In our tests, we successfully use 0 � 	 " :
A@6:6: � .

In this way, for every � � �
we determine a polynomial��� � � ' � � on � . If the degree � of ��� � is less than three, the cu-

bic Bernstein-Bézier representation (1) of

� � � � u � �)* +�* , �
5 +�6 �� � u �32 +
 u � �
 (3)

Figure 2: Remaining Bernstein-Bézier coefficients are determined
due to � � -conditions in the order: red, blue, green, and yellow.

is finally obtained by degree raising. The corresponding relations
between the coefficients of � � � in its two representations (1) and (3)
result from the following equation [16]:45

)* +�* , �
5 +�6 �� 2 +768 � < (< � <
 � '#! � �)* +�* , '

5 +�6 '� 7 + �

3.4 C1-Conditions

In the second step of the algorithm, we determine the approximating
spline ' on the remaining triangles � � � � that have non-empty
intersection with � .

For computing the remaining coefficients of ' we use the
well-known ��� smoothness conditions for two adjacent triangular
Bézier patches [16]. By using these simple formulas, we compute
the Bernstein-Bézier coefficients of the polynomial pieces of the
smooth spline ' on the triangles � � � � that have a non-empty
intersection with � . In particular, we do not need to perform this
step for the remaining triangles in the border cells. This computa-
tion works step by step as illustrated in Figure 2. Here, so-called
domain points in the part of the domain surrounded by four trian-
gles in

�
are shown. Each domain point represents a Bernstein-

Bézier coefficient of the spline. In particular, the points shown in
black correspond to the Bernstein-Bézier coefficients on the trian-
gles in

�
. We first use these coefficients and the above � � smooth-

ness conditions to compute the coefficients corresponding to the
red points. Then we compute successively the coefficients shown
in blue, green, and orange. Note that in the last step there are sev-
eral possibilities to compute the coefficient shown in orange. We
just choose one of them since the result is unique as follows by a
standard argument.

4 Rendering

To efficiently render our spline surface, we adapted several tech-
niques from [8, 17, 29, 44] to smooth Bézier spline surfaces. We
start by overlaying the domain � with a uniform, axis-aligned ren-
der grid. The resolution of this grid is adjustable, we typically use
about $: � $: grid cells. Each of the grid cells 9�� � is assigned a
minimum and a maximum # -value # min� � and # max� � , which are taken

Figure 3: Sub-grids and resulting triangle meshes corresponding
to LOD � 1 (left) and LOD � 2 (right). The spline surface is
evaluated at the positions 0 for level one. For level two, the spline
needs to be evaluated only at the new positions 0 .

from the minimum and the maximum Bernstein-Bézier coefficient
of all the Bézier triangles covered by 9 � � , respectively. Since the
spline surface is known to lie completely inside the convex hull of
its Bernstein-Bézier control points, we can use the boxes 7 � � defined
by the grid cells 9 � � and their associated # -values # min� � and # max� � as
bounding boxes for a cheap visibility test. Our rendering algorithm
is organized as follows:

for each box 7 � �
cull 7 � � against view frustum;
if 7 � � not completely culled
mark 7 � � as visible;
compute bounding rectangle of projection

of 7 � � into screen space;
compute LOD from max bounding rect extent;
for each visible box 7 � �
if LOD �� 7 � � .LOD
evaluate spline on uniform sub-grid of

level LOD over 9 � � ;
draw triangle strips into 7 � � .displayList;7 � � .LOD = LOD;

execute 7 � � .displayList;
The culling of the axis-aligned bounding boxes 7 � � is performed

in a conservative but cheap way: Each of the eight vertices of a box
is projected into screen space. The box is rejected from visibility
if and only if all of the projected vertices lie completely inside the
same of one of the four half planes above, below, left, or right of
the viewport. An early acceptance of the box is found, if any of the
projected vertices lies inside the viewport. We found that this con-
servative test performs better than a more accurate test that includes
2D line clipping for each of the twelve edges of a box.

For each box 7 � � that passes the culling test, we compute
the bounding rectangle of the projected vertices. The maximum
width / height of all these bounding rectangles is used to compute
the global level-of-detail (LOD) for the current viewpoint. Obvi-
ously, it would be more efficient to have an individual LOD for
each box: grid cells that are projected onto only a few pixels need
not be subdivided as finely as grid cells that cover a large area of
the viewport. However, such an adaptive LOD might result in vis-
ible gaps between adjacent grid cells, since the common boundary
curve of the spline surface between two grid cells might be repre-
sented by a different number of linear segments for each cell. To
overcome these problems, we are currently investigating the appli-
cability of view-dependent sampling and triangle mesh generation
as suggested for instance in [15].

After the global LOD has been computed, the spline surface is
evaluated within every visible box 7 � � on a uniform sub-grid over
the domain of the grid cell 9 � � . The resolution of the sub-grid is
determined by the LOD. In our implementation we use a discrete
LOD such that incrementing the LOD by one doubles the resolution

of the sub-grid along both of its dimensions (see Figure 3). This
approach has the advantage that all surface points and normals from
level � can be re-used for level � � . Thus the spline surface has to
be evaluated only at the new positions for a higher level. In the case
of going down from level � � to level � , we do not need to evaluate
the spline at all – all the surface points and normals we need have
already been computed. Since the number of triangles quadruples
when going from level � to level � � , it might seem reasonable
to split every triangle into only two triangles, instead. In this case,
however, it is not possible to generate optimal triangle strips for
efficient rendering: Either the triangle strips are running diagonally,
so that additional expensive texture binding calls are needed, or the
triangle strips become much shorter than in our current approach.

To avoid possible visual discontinuities (“popping effects”)
when changing the LOD during an animation, we blend the surfaces�

new (corresponding to the new LOD) and
�

old (corresponding to
the previous LOD) over � successive frames using the alpha buffer
and a blend function provided by our graphics hardware. Since we
achieve real-time frame rates for rendering, we found that �9� @6:
yields visually smooth transitions from

�
old to

�
new.

The evaluation of the spline within every visible box 7 � � is done
using the de Casteljau algorithm [12]. In contrast to tensor product
patches of the same degree, the de Casteljau algorithm for bivari-
ate triangle patches takes about half as many multiplications and
additions to compute a point on the spline surface. If, like in our
case for proper shading, the surface normal has to be computed as
well, the advantage of bivariate triangle patches becomes even more
evident: In addition to the costs of evaluating a surface point, we
need only three multiplications and additions each to compute the
(unnormalized) exact normal vector in that point.

5 Results

In order to verify the working of our method, we performed nu-
merical tests on several real world scattered data sets which vary
widely in size and quality. All simulations were run on an sgi
Octane with a 300 MHz R12k processor and 1 GB main memory.
The approximation quality of a spline is measured using the one-
sided Hausdorff distance ��� (�. ' � ��-3. between the scattered
data points ��� �
� �
 # � � � . ' and the spline ' � � . To facilitate
comparison of different data sets, we divide the maximum approx-
imation error by the length � of the diagonal of the scattered data’s
bounding-box. The results of our simulations are summarized in
Table 1.

The results in Table 1 clearly show that both the runtime and the
memory usage of our algorithm is linear in the number " of scat-
tered data points. The approximation quality of the spline depends
on the quality of the input data: The more densely the scattered data
points lie, the more least squares polynomial patches of higher order
will be created in general, thereby increasing the local approxima-
tion order of the spline. Our simulations show that large real world
scattered data can be approximated well within some seconds: The
maximum approximation error for our largest data set (588 km

with 360 meters elevation range) is about 14 meters (relative error� � @�� � : !�&). In particular, in the case of huge and dense data sets, the
deviation of the approximating spline to the majority of data points
is less than one meter.

Once a spline approximation to a scattered data set has been
computed, this spline surface can be efficiently evaluated for ren-
dering using the techniques described in Section 4. On our Oc-
tane with a Vpro/8 graphics board we achieve real-time frame rates
of 30–60 fps in typical fly-through sequences with up to 100k
Gouraud-shaded and textured triangles per frame. Moreover, it is
possible to locally modify the data, e.g., for animation or model-
ing, and render the adapted spline surface at interactive frame rates.
We have created an animation sequence of a surface that has been

avg. density memory percentage of patches of degree percentage of data with � � � �"
(data / km
) usage CPU

3 2 1 0
$�%)& � � � �� F 10 m F 5 m F 1 m

9,704 81 1.8 MB 0.3 s 61.9% 8.4% 13.7% 16.0% $ � � ��� : !�' 3.3% 17.5% 95.3%

45,324 278 4.2 MB 1.4 s 95.6% 1.4% 2.8% 0.2% @ � � ��� : !�' 9.0% 28.5% 84.7%

736,577 5,001 48 MB 19.9 s 77.6% 20.4% 1.4% 0.6% " � � �6��: !�& 0.002% 0.06% 8.4%

2,958,078 5,020 189 MB 92.9 s 78.1% 20.6% 0.8% 0.5% �*� @ �6��: !�& 0.002% 0.07% 8.5%

Table 1: Results of smooth approximation for different real world scattered data sets. Timings are given for the construction of the spline; see
Section 5 for details on operating platform and Hausdorff distance � � . The diameter of the scattered data’s bounding-box is denoted by � .

constructed from 736k scattered data points. In an area that covers
about 0.4% of the surface, the scattered data points are moved from
frame to frame. Due to the locality of the method, we are able to re-
compute the Bernstein-Bézier coefficients of the polynomial pieces
for each frame and render the spline surface at about 10 fps.

An additional area of application for our method is (lossy) ge-
ometric compression (see Figure 6). Storing the �
 Bernstein-
Bézier coefficients that have been computed as described in Sec-
tion 3.3 allows to reconstruct the complete spline due to � � -
conditions. For � � � "��;��� , this requires storage of approx-
imately " floating point numbers only, since the position of the
Bernstein-Bézier coefficients is implicitly defined by our scheme1.
Since the scattered data require storage of $ " floats, we obtain a
compression ratio of about $ (�� . By decreasing the resolution of
the spline grid, we can control the compression ratio. Unlike many
other compression techniques, our method becomes faster when us-
ing higher compression ratios. Compressing three million scattered
data points from an area of 588 km
 with an elevation range of
360 meters by a ratio of $:%(� takes about 15 seconds and yields a
maximum approximation error of 20 meters. Although our method
will probably not achieve the same reconstruction quality as state-
of-the-art geometric compression or mesh reduction techniques [4],
it can compete very well with such techniques concerning run-time
complexity. Most of these techniques operate on polygonal meshes.
If, however, the input data are given as unorganized scattered data,
it takes �2� "�������"9� time to compute a triangulation. Since our
method computes the Bernstein-Bézier coefficients of a smooth ap-
proximation of the scattered data in � � " � time, it might be the
method of choice for very large " .

6 Conclusion and Future Work

We have presented an efficient method to automatically compute
smooth approximations of large sets of unorganized scattered data
points. The method is based on the construction of a differentiable
bivariate spline with respect to a uniform triangle mesh over an ar-
bitrarily shaped planar domain. For a uniformly distributed subset
of triangles we compute local polynomial least squares approxima-
tions by using singular value decomposition (SVD) of small ma-
trices. The smooth approximating spline is constructed by gluing
together these patches using Bernstein-Bézier smoothness condi-
tions. We emphasize the following key features of our method:

0 We develop a completely local approach, which means that
we do not use any global optimization or other techniques in-
volving computation with large portions of the data set.

0 We employ the rank-revealing features of SVD to control the
polynomial degree of the initial patches, which allows to take
into account the local variation and distribution of the data
points.

1In addition, the number � and the min/max coordinates of the scattered
data in the ��� -plane have to be stored.

0 The algorithm does not make use of any interpolation scheme.
In particular, no estimation of derivatives is needed.

0 Our method offers optimal approximation order and the con-
structed spline is by its nature � � -continuous. In addition, the
spline surface does not have artifacts like, for instance, peaks
or flat spots close to the data points.

0 The use of a uniform triangle mesh also contributes to great
savings in computation time. As a result, the overall complex-
ity of the algorithm is linear in the number of scattered data
points.

The numerical examples with millions of scattered points of real
world data sets show that the approximating spline can be computed
very fast, the approximation error is very small, the resulting sur-
faces are of high visual quality and can be easily used for further
processing in the context of rendering, modeling, and geometric
compression.

In addition we note that the most expensive step of our algo-
rithm is the computation of local discrete least squares approxima-
tions (more than 95 % of the overall computation time). Since these
approximations are computed independently from each other, this
step can be easily parallelized, thus leading to savings proportional
to the number of processors on a multi-processor machine.

Considering these results, a variety of generalizations and appli-
cations of the new method can be thought of. In particular, the local
adaptiveness of the method can be increased by designing multi-
level spline spaces and adjusting the local dimension of the spline
space adaptively to the local distribution of data points. However,
because of the additional computational complexity, it is not clear
if this approach will increase the overall efficiency of the algorithm.
Other natural and important questions that include generalizations
of the method to the reconstruction of surfaces of higher smooth-
ness and more general topology or to the reconstruction of trivariate
functions using, e.g., Bézier tetrahedra are currently under investi-
gation.

Acknowledgment

The data used for the simulations and images was taken from
the digital terrain model, scale 1:5000 (DGM 5) by kind permis-
sion of “Landesamt f ür Kataster-, Vermessungs- und Kartenwe-
sen des Saarlandes” under license numbers G-07/00 (9/26/00) and
D 90/2000 (10/17/00).

References
[1] E. Arge, M. Dæhlen, and A. Tveito. Approximation of Scattered Data

Using Smooth Grid Functions. J. Computational and Applied Math.,
59:191–205, 1995.

[2] M. D. Buhmann. Radial Basis Functions. Acta Numerica, pp. 1–38,
2000.

[3] C. K. Chui. Multivariate Splines. SIAM, 1988.

[4] P. Cignoni, C. Montani, and R. Scopigno. A Comparison of Mesh
Simplification Algorithms. Computers & Graphics, 22(1):37–54,
1998.

[5] P. Cignoni, E. Puppo, and R. Scopigno. Representation and Visualiza-
tion of Terrain Surfaces at Variable Resolution. The Visual Computer,
13(5):199–217, 1997.

[6] D. Cohen and A. Shaked. Photo-Realistic Imaging of Digital Terrains.
In Computer Graphics Forum (Proc. Eurographics ’93), volume 12,
pp. C363–C373, 1993.

[7] D. Cohen-Or and A. Shaked. Visibility and Dead-Zones in Digital Ter-
rain Maps. In Computer Graphics Forum (Proc. Eurographics ’95),
volume 14, pp. C171–C180, 1995.

[8] S. Coquillart and M. Gangnet. Shaded Display of Digital Maps. IEEE
Computer Graphics and Applications, 4(7):35–42, July 1984.

[9] M. Dæhlen and V. Skyth. Modelling Non-rectangular Surfaces using
Box-splines. In D. C. Handscomb, Mathematics of Surfaces III, pp.
287–300. 1989.

[10] W. A. Dahmen, R. H. J. Gmelig Meyling, and J. H. M. Ursem. Scat-
tered Data Interpolation by Bivariate � � -piecewise Quadratic Func-
tions. Approximation Theory and its Applications, 6:6–29, 1990.

[11] O. Davydov and F. Zeilfelder. Scattered Data Fitting by Direct Exten-
sion of Local Polynomials with Bivariate Splines, 2001. in prepara-
tion.

[12] P. de Casteljau. Outillages M éthodes Calcul. Technical report, Andre
Citroen Automobiles, Paris, 1959.

[13] P. Dierckx. Curve and Surface Fitting with Splines. Oxford University
Press, 1993.

[14] P. Dierckx, S. Van Leemput, and T. Vermeire. Algorithms for Sur-
face Fitting using Powell-Sabin Splines. IMA Journal of Numerical
Analysis, 12(2):271–299, 1992.

[15] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich,
and M. B. Mineev-Weinstein. ROAMing Terrain: Real-time Opti-
mally Adapting Meshes. In Proc. IEEE Visualization, pp. 81–88,
1997.

[16] G. Farin. Curves and Surfaces for Computer Aided Geometric Design.
Academic Press, 4. edition, 1993.

[17] R. L. Ferguson, R. Economy, W. A. Kelley, and P. P. Ramos. Contin-
uous Terrain Level of Detail for Visual Simulation. In Proc. Image V
Conference 1990, pp. 145–151, 1990.

[18] D. R. Forsey and R. H. Bartels. Surface Fitting with Hierarchical
Splines. ACM Transactions on Graphics, 14(2):134–161, April 1995.

[19] R. Franke. Scattered Data Interpolation: Test of Some Methods. Math-
ematics of Computation, 38(157):181–200, January 1982.

[20] R. Franke and H. Hagen. Least Squares Surface Approximation us-
ing Multiquadrics and Parameter Domain Distortion. Computer Aided
Geometric Design, 16(3):177–196, 1999.

[21] R. H. J. Gmelig Meyling and P. R. Pfluger. Smooth Interpolation to
Scattered Data by Bivariate Piecewise Polynomials of Odd Degree.
Computer Aided Geometric Design, 7(5):439–458, August 1990.

[22] B. F. Gregorski, B. Hamann, and K. I. Joy. Reconstruction of B-spline
Surfaces from Scattered Data Points. In Proc. Computer Graphics
International 2000, pp. 163–170, 2000.

[23] G. Greiner and K. Hormann. Interpolating and Approximating
Scattered 3D Data with Hierarchical Tensor Product Splines. In
A. Le M éhaut é, C. Rabut, and L. L. Schumaker, Surface Fitting and
Multiresolution Methods, pp. 163–172. 1996.

[24] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDon-
ald, J. Schweitzer, and W. Stuetzle. Piecewise Smooth Surface Recon-
struction. In Computer Graphics (SIGGRAPH ’94 Conf. Proc.), pp.
295–302, 1994.

[25] R. Klein, D. Cohen-Or, and T. H üttner. Incremental View-dependent
Multiresolution Triangulation of Terrain. The Journal of Visualization
and Computer Animation, 9(3):129–143, July–September 1998.

[26] P. Lancaster and K. Šalkauskas. Curve and Surface Fitting. Academic
Press, 1986.

[27] C.-H. Lee and Y. G. Shin. A Terrain Rendering Method Using Vertical
Ray Coherence. Journal of Visualization and Computer Animation,
8(2):97–114, 1997.

[28] S. Lee, G. Wolberg, and S. Y. Shin. Scattered Data Interpolation with
Multilevel B-Splines. IEEE Transactions on Visualization and Com-
puter Graphics, 3(3):228–244, July 1997.

[29] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hughes, N. Faust, and
G. Turner. Real-Time, Continuous Level of Detail Rendering of
Height Fields. In Computer Graphics (SIGGRAPH ’96 Conf. Proc.),
pp. 109–118, 1996.

[30] S. K. Lodha and R. Franke. Scattered Data Techniques for Surfaces.
In H. Hagen, G. Nielson, and F. Post, Proc. Dagstuhl Conf. Scientific
Visualization, pp. 182–222, 1999.

[31] M. Morandi Cecchi, S. De Marchi, and D. Fasoli. A Package for
Representing � � Interpolating Surfaces: Application to the Lagoon
of Venice’s Bed. Numerical Algorithms, 20(2,3):197–215, 1999.

[32] G. N ürnberger, L. L. Schumaker, and F. Zeilfelder. Local Lagrange
Interpolation by Bivariate � � Cubic Splines. In Proc. Conference on
Curves and Surfaces, 2001. in print.

[33] G. N ürnberger and F. Zeilfelder. Local Lagrange Interpolation by Cu-
bic Splines on a Class of Triangulations. In Proc. Conf. Trends in
Approximation Theory 2000, pp. 341–350, 2001.

[34] R. Pfeifle and H.-P. Seidel. Fitting Triangular B-splines to Functional
Scattered Data. In Proc. Graphics Interface ’95, pp. 80–88, 1995.

[35] M. J. D. Powell. Radial Basis Functions for Multivariable Interpola-
tion. In J. C. Mason and M. G. Cox, Algorithms for Approximation of
Functions and Data, pp. 143–168. 1987.

[36] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge
University Press, 2. edition, 1992.

[37] H. Qin and D. Terzopoulos. D-NURBS: A Physics-Based Framework
for Geometric Design. IEEE Transactions on Visualization and Com-
puter Graphics, 2(1):85–96, March 1996.

[38] R. Schaback. Improved Error Bounds for Scattered Data Interpo-
lation by Radial Basis Functions. Mathematics of Computation,
68(225):201–216, January 1999.

[39] F. J. M. Schmitt, B. B. Barsky, and W. Du. An Adaptive Subdivision
Method for Surface-Fitting from Sampled Data. In Computer Graph-
ics (SIGGRAPH ’86 Conf. Proc.), pp. 179–188, 1986.

[40] L. L. Schumaker. Fitting Surfaces to Scattered Data. In G. G. Lorentz,
C. K. Chui, and L. L. Schumaker, Approximation Theory II, pp. 203–
268. 1976.

[41] D. A. Southard. Piecewise Planar Surface Models from Sampled Data.
In Proc. Computer Graphics International ’91), pp. 667–680, 1991.

[42] A. J. Stewart. Hierarchical Visibility in Terrains. In Rendering Tech-
niques ’97 (Proc. 8th EG Workshop on Rendering), pp. 217–228,
1997.

[43] C. Wiley, A. T. Campbell III, S. Szygenda, D. Fussell, and F. Hud-
son. Multiresolution BSP Trees Applied to Terrain, Transparency, and
General Objects. In Proc. Graphics Interface ’97, pp. 88–96, 1997.

[44] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Programming
Guide. Addison–Wesley, Reading, MA, 1999.

[45] W. Zhang, Z. Tang, and J. Li. Adaptive Hierarchical B-Spline Sur-
face Approximation of Large-Scale Scattered Data. In Proc. Pacific
Graphics ’98, pp. 8–16, 1998.

[46] J. Zhou, N. M. Patrikalakis, S. T. Tuohy, and X. Ye. Scattered Data
Fitting with Simplex Splines in Two and Three Dimensional Spaces.
The Visual Computer, 13(7):295–315, 1997.

a) data distribution b) two configurations of triangles c) associated scattered data points d) surface with applied texture

Figure 4: Stages of the approximation process. a) Distribution of 736,577 scattered data points. b) Perspective view onto the surface with
projected spline grid and data distribution. Two different sets of triangles � � �

(blue, magenta, green, cyan) are shown on the left and on
the right. The Bézier points over these triangles are computed from the given scattered data points by local least squares approximation (see
Section 3.3). Figure c) depicts the corresponding scattered data points (color coded) that have been used in this local least squares fitting for
each triangle. Once the Bernstein-Bézier representation over the blue, magenta, green, and cyan triangles is available, the Bernstein-Bézier
representation over the yellow triangles � � � � can be computed from the surrounding triangles using the � � smoothness conditions (see
Section 3.4). d) Final result with applied texture.

02� @6:
max � � � ��� @ �6� � m, avg � � � ��� : � ��� m

0 � ��� :
max � � � �6� � � � $ m, avg � � � ��� : � $�� m

0 � � :�:�:
max � � � ��� ��� � @ m, avg � � � ��� : � $ � m

Figure 5: Influence of the condition number 0 on the approximation quality of the surface. Left: 0 is too low, the average local approximation
order of the spline decreases; Middle: 0 is chosen appropriately; Right: 0 is chosen far too high, thereby reducing the average approximation
error but exhibiting high errors at individual data points in regions of extremely sparse data (see bottom right corner of image). See Sections 3.3
and 5 for details on 0 and the Hausdorff distance � � , respectively.

12,380 coeff., compr. ratio @*� � (� 6,010 coeff., compr. ratio � � � (� 2,880 coeff., compr. ratio ����� � (�
Figure 6: Scattered data compression for an arbitrarily shaped domain: Distribution of " � ��@*
 $ � � scattered data points and approximating
spline surfaces with a varying number of degrees of freedom (left to right). For a rectangular domain, the compression ratio is about three
times higher than the ratio " (#coefficients, cf. Section 5. For an arbitrarily shaped domain, we need to store one additional integer number
for every triangle � � � (see Section 3) to uniquely determine the position of the Bernstein-Bézier coefficients. Therefore, the compression
ratios given above are slightly lower than for the rectangular domain case.

