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Scattered Data Problem

QcCR? bounded domain (d > 1)
== {&YY., € Q  arbitrarily distributed points in €
{z 3N, CR known values of f: Q — R

Find s : 2 — R that approximates f on (2

Desirable features of a scattered data algorithm:

e Good approximation quality

e No artefacts in s such as oscillations or ridges
(not present in f)

e Usable s: fast evaluation, etc.
e Robustness w.r.t. noise in {2},

e Scalability: Linear time and cost w.r.t. N
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Two-Stage Methods

Let w C €2 be a “small subdomain”.
The values f(z), * € w, do not have much to do with
z; = f(&;) for &; situated far away from w.

Stage 1: Cover 2 with a number of overlapping
subdomains w,,, 1 € M, and compute suitable local
approximations p,, : w, — R for all € M.

Stage 2: “Blend” the local approximations p,, p €
M, together to a smooth (say, C'! or C?) function
s: 0 — R
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Two-Stage Methods Based on Splines

Several versions of the two-stage methods have been
developed since 1970th.
Surveys on scattered data fitting:

Schumaker 1976

Barnhill 1977

Lawson 1977

Franke 1982

Alfeld 1989

Franke & Nielson 1991

Fasshauer & Schumaker 1998

A locally supported polynomial spline basis {Bj}f:1
can be used in Stage 2 (Schumaker 1976):

D
i=1
where {);}7, are dual functionals, i.e.

1, ifi=j
M) =4 0 e

otherwise.
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What Spline Bases?

Possible candidates are any smooth, locally
supported, piecewise polynomial bases:

e tensor products of univariate B-splines

e box splines

e simplex splines

o C! finite element bases

e stable local spline bases on triangulations (nodal or
Bernstein-Bézier versions)

(All of these have been actually studied in the context
of scattered data fitting.)

Two points to be taken into account:

1. Approximation power of the spline space, which
essentially amounts to (Riesz) stability and degree
of polynomial reproduction.

2. Properties of the dual functionals )\;: It is
e.g. easier to work with Lagrange functionals (point
evaluations) than with functionals involving first or
second order derivatives.
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Advantages of Polynomial Splines

e Scalable algorithms for scattered data fitting thanks
to the locality of the basis functions

e Usability: Fast and stable evaluation by using
recurrent relations for basis splines (box splines,
simplex splines), or Bernstein-Bézier techniques

e Approximation power is essentially determined
by the approximation properties of the local
approximations p,,

e Splines do not produce artefacts unless the
local approximations are bad

e If the local approximations are resistant to
noise, than so are the resulting spline surfaces

Quality of local approximations is decisive!
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Our Bases

D. & Zeilfelder, preprint

e C! piecewise cubics or (? piecewise sextics
on a four-directional mesh in R?

e In the C! case a modification of the FVS
finite element bases; related to piecewise cubic local
Lagrange bases by Niirnberger, Schumaker &
Zeilfelder, 2000

e Dual functionals: Bernstein-Bézier coefficients

corresponding to domain points completely
filling certain triangles
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Computation of Bernstein-Bézier coefficients by
extension of local polynomials using smoothness
conditions

C! cubics:
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Approximation Error

6 for C?
h  the gridsize

{3 for C1
q:

T,, the triangle corresponding to w,

p, the local polynomials approximation on w,

Assume:

zi:f(&;), iZl,... ,N,
f e Witt(Q) for some 1 < p < o0

Then:
||f — SHLP(Q) < Olhq+1|f|wg+1(g)

1/
+Cz< Z ||f—pu||ip(TM)) ’

peM

~»

1 <p<oo,

||f_3HLoo(Q) < Clhq+1|f|wgo+1(g)
+Co Z%%Hf — Pull Lo (T,)-
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Local Approximations

=, =2=2Nuw, (local portion of data)
p.: least squares polynomial of total degree < g,

D lz—pu&)P= min Y [m—p&))

~ deg(p)<q ~
§iE€EEL # §iE€EEL

where g, is the greatest acceptable degree.

We start by examining the possibility to choose g, = 3,
resp. g, = 6. If it does not work, we successively drop
the degree by one, until we find an acceptable value
for ¢, (g, = 0 is always acceptable, but poor).

Philosophy: =, may contain too little information for
a higher degree polynomial approximation. (Example:
a lot of points close to a circle are not good for the
approximation with quadratic polynomials.)

The strategy of dropping the degree has shown
(in our tests) a much better performance than
that of looking for additional points
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Acceptable Degree

{b1,... ,by}: Bernstein polynomial basis w.r.t. the

triangle 7T}, for the polynomials of degree ¢ (m = (‘Hf))

M = [b;(&)]=1,....m, ¢;cz,. collocation matrix
Omin(M): the minimal singular value of M;

Degree g is acceptable if
l/O'min(M) S K,

where K 1s a tolerance value.

Best values of « are very low (between 1 and 5) for
the real world data in our tests.

If < is high, we get surfaces with artefacts,
especially for “complicated” types of data: track
data, noisy data, data with high variations of
density in xy-plane.
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Why is « Significant?

v has a direct influence on the approximation
power of the least squares polynomial p,,

Let L(f) be the least squares polynomial of degree ¢,
computed from the values z; = f(&), & € Z;. Then
L:C(w,) = C(w,) is a linear operator.

We have

Ki/omin(M) < |[Lllcoc < Ko/#Eu/0min(M),

in particular,

|Lllc—c < Kay/#Eu K,

where Ki, K5 are the stability constants of the
Bernstein basis in the following sense:

Killellz < 1) ebjllcww,) < Kallella.
j=1
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Since the operator L exactly reproduces polynomials
of degree g,,, we have

1f = L) Loy < @+ |Lllcse)Eq.(f wy)
< (14 Ko/ #E, “)Equ(fv W)
where
E, (f,w,):= inf — w
au(frwp) deg(p)gqu\lf Pl Loo(wp)

is the best approximation of f|,, by polynomials of
degree q,,.

It 1s well known that

Eq.(fywpu) < C’diam(wu)qﬂ+1|f|Wgéz+1(w)

C' is an absolute constant: Recall that w,, is a circle,
and g, does not exceed 3, resp. 6.
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Thus, we get the following estimate for the overall
approximation quality:

+1
|5 =5lznut@) < CLRT|flypgin )+ Co mak | f=pull iy

+1
S O g o)

+ Cs max h T di T (14 Ko /#E, ) | £ g

ueEM (wp)
where
diam(w,,)
d, == — :
diam(7},)
(In most cases d,, is bounded.)
As before,
[ 3 forCH,
=9 6 for C2,
and
0<qu=<gq
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Visualization and Rendering of Large
Digital Terrain Models

The usability and efficiency of the C' method in the
context of interactive visualization and rendering of
large terrain data has been demonstrated by Haber,
Zeilfelder, D. & Seidel, 2001, where real-time frame
rates for typical fly-through sequences are achieved.

The C! method was implemented within the scope of
the visualization project. The implementation of the
C? method in D. & Zeilfelder follows similar ideas.
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Ongoing and Future Work

Adaptive local approximations
Multiresolution

Nonlinear approximation
Adaptive meshes

Real world applications
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Franke Test Function

08 ] 1

Original function

C! spline
231 degrees of freedom
max = 0.0434
mean = 0.00704
rms = 0.0101
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100 Points by R. Franke

C? spline
476 degrees of freedom
max = 0.0355
mean = 0.00515
rms = 0.00761
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Denoising

(a) (b)

(a) Franke test function with normally distributed
random errors on the 100x100 grid (standard deviation
of the noise o = 0.05)

(b) C* Spline reconstruction (dim=304)

Error to the original function:
max=0.0274, mean=0.00415, rms=0.00552

Cputime 3.04 sec
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Glacier

8,345 points (available from the homepage of
R. Franke): 44 digitized height contours of a glacier

2100 —
2000 —
1900 —
1800 —
1700 —
1600 —
1500 —

1400 —
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C? spline reconstruction

dim=7,254

Cputime 27.2 sec
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Contour plot:
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Screenshot with data points:
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Black Forest

xy-locations (15,885 data points from a hilly area)
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C? spline reconstruction (dim=91,526, cpu=12.6 sec)

—
<.
>, - |

dim=91,526

Cputime 12.6 sec
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Surface in the area indicated with a box on page 25:
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Contour plot:
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Rotterdam Port

634,604 noisy raw data points (with outliers) from the
measurements of the port of Rotterdam (using high
density multibeam echosounder).

Quality Positioning Services BV, Zeist, Holland.

Typical distribution of the xy-points:
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Outliers:
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Despiking / data cleaning:

We compute the C! spline of a relatively small
dimension (22,399 parameters) und eliminate all data
points, for which the z-values are at a greater distance
from the spline than the rms error on the full data set.

C'! spline with 22,399 parameters: (Cputime 42.5 sec)
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Approximation of the cleaned data (619,205 points).

C! spline with 142,027 parameters: (Cputime 127 sec)
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