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Abstract

The performance of different edge vector basis functions is compared for non-affine elements. Improved accuracy is measured

by comparing the calculated eigenvalues of the electromagnetic field distribution in a cavity with analytical results. Enhanced

H(curl)-conforming basis functions are numerically shown to preserve the optimal approximation properties of the finite element

on non-affine hexahedra.

1 Introduction

Edge elements are well suited to the analysis of electromagnetic fields for both the quasi static and high frequency limits of

Maxwell’s equations. Simplicial elements using Nédélec edge basis functions give stable, convergent solutions provided that the

element shapes are not too extreme [6]. Other elements types, for example triangular prisms, pyramids and hexahedra, can be

constructed using the Nédélec family of edge vector basis functions. However, the shape of these elements has a strong effect

on the accuracy [2, 5, 3]. Modified edge basis functions have been developed to resolve the problem [10] but these are costly to

calculate.

Enhanced edge vector basis functions have recently been proposed [9, 3]. This paper discusses an implementation of these

enhanced hierarchical basis functions for hexahedral elements, and provides numerical comparison to the classical Nédélec

basis functions. The enhanced basis functions are easy to calculate and include additional face- and volume-based degrees of

freedom. In addition to the Nédélec degrees of freedom, each enhanced hexahedron has two degrees of freedom per face, and

three internal degrees of freedom, as displayed on Figure 1. The face-based degrees of freedom are shared on the element

interface. The rationale behind the construction of the extended edge elements is based on a local-to-global mapping analysis,

Figure 1: Additional Hexahedral Degrees of Freedom.

and is discussed in Section 2.

In this paper the eigenvalues of the electromagnetic field in a cavity are used to investigate the solution errors that are related

to non-affine element shapes. The results are obtained using Opera SOPRANO [1] for the computation of high-frequency

electromagnetic fields and ARPACK [11] to calculate eigenvalues. Timings were taken using a 3.6 GHz Intel Xeon E5-1620.

Nédélec elements [13] are needed for electromagnetics problems for which it has been established that nodal (piecewise continu-

ous) elements yield non-physical solutions [14, 7]. In contrast to nodal elements, Nédélec elements, also referred to as tangential
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elements, are characterized by tangential continuity across the elements interface and as such, provide the natural framework for

solving finite element discretizations of variational problems in electromagnetics (cf. [4, 15, 12] and the references therein).

Finite elements are typically constructed on a so-called reference element with ideal symmetry properties, such as a unit cube

or a symmetric pyramid. The global finite elements are then generated by applying appropriate differential mappings and en-

forcing suitable continuity conditions accross the elements interface. Affine elements are obtained by affine transformations of

reference elements with a constant Jacobian. On fully affine meshes, Nédélec elements of order r are proved to yield an optimal

convergence rate in H(curl)-norm [8].

This optimality is lost when the elements do not tend to an affine mesh, as the mesh is refined. In order to retain the optimal

approximation properties on non-affine meshes, the Nédélec shape functions need to be augmented [9, 3]. The purpose of this

work is to demonstrate the effectiveness of the enhanced edge elements on non-affine meshes.

This paper is organized as follows. The theoretical conditions for optimal accuracy and the motivation behind the extension

of the Nédélec are discussed in Section 2. In order to enforce H(curl)-conformity, the extended finite element space must

be tangentially continuous, which is done by adopting a unique global orientation of the shape functions whose tangential

components do not vanish on the elements interface. The enhanced edge elements include additional face-based degrees of

freedom with non-zero tangential components across the element’s faces. An easy and efficient solution for addressing the non-

trivial orientation of these additional face-based degrees of freedom is discussed in Section 3. Section 4 contains numerical

simulations which compare the performance of the enhanced edge elements with that of the Nédélec elements. The main results

are summarized in Section 5.

2 Rationale

Φ
K̂ K

Figure 2: Local-to-Global Mapping.

As mentioned previously, finite elements are typically constructed from a reference element by means of appropriate differential

mappings. Assuming that the reference element K̂ and the physical element K are related by a diffeomorphism Φ such that

Φ(K̂) = K (as shown on Figure 2 for a non-affine quadrilateral), then the vector fields are related by the H(curl)-conforming

transform [2, Equation (1.3)]:

Â(x̂) = dΦ(x̂)tr
A(x),

or, alternatively,

A(x) = dΦ(x̂)−tr
Â(x̂), (1)

where (·)tr denotes the transpose operator, and dΦ represents the Jacobian matrix of the transformation.

In order to maintain an optimal approximation in H(curl)-norm, the key idea used in [3] consists in determining which functions

need to be added on the reference element, for the Nédélec space to be spanned by the shape functions on the physical element.

More precisely, for a given polynomial order r, the vector field A in Equation (1) is successively substituted with Nédélec poly-

nomials of order r, which, combined with the fact that Φ is a generic non-affine map (trilinear diffeormorphism for hexahedra),

yields an extended edge element space for non-affine geometries. In the lowest-order case, the enhanced hexahedral element

has two additional degrees of freedom per face, plus three volume-based degrees of freedom, as illustrated on Figure 1. Using

an alternative approach based on the de Rham diagram and the optimal L2-approximation of curl(A) in H(div), Falk et al [9]

construct the same hexahedral basis for the lowest-order case.

On the reference hexahedron K̂ := [0, 1]3, the additional lowest-order volume-based shape functions have the following form:

Ê
v
x̂ = ŷ(1− ŷ)ẑ(1 − ẑ)êx̂,

Ê
v
ŷ = ẑ(1− ẑ)x̂(1− x̂)êŷ,

Ê
v
ẑ = x̂(1− x̂)ŷ(1− ŷ)êẑ,

(2)

where êx̂ denote the unit vector along the x̂-axis. The symbols in the last two equations are defined in a similar way. In the above

equation, note that βf1,ŷ := ŷ and βf2,ŷ := 1− ŷ are parametrizations of the two faces of K̂ which are orthogonal to the ŷ-axis.

By definition, the parameter βf associated with a face f orthogonal to the x̂i-axis is either of the form βf := x̂i or βf := 1− x̂i,
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and defined in such a way that βf |f ≡ 0. It thus follows that the volume-based shape functions defined in Equation (2) have

vanishing tangential components on the element’s boundary.

Similarly, the additional lowest-order shape functions associated with the face f , parallel to the x̂ŷ-plane, have the following

form:

Ê
f,1
x̂ŷ = ŷ(1− ŷ)βf ′ êx̂,

Ê
f,2
x̂ŷ = x̂(1− x̂)βf ′ êŷ,

(3)

where βf ′ represents the parametrization of the face opposite to f . For example, if the face f in the above equation lies on the

plane ẑ = 0 (respectively 1− ẑ = 0), then βf ′ := 1− ẑ (respectively βf ′ := ẑ). The shape functions associated with faces lying

on the ŷẑ- or ẑx̂-plane have an equivalent form as in Equation (3), that is,

Ê
f,1
ŷẑ = ẑ(1− ẑ)βf ′ êŷ,

Ê
f,2
ŷẑ = ŷ(1− ŷ)βf ′ êẑ,

and

Ê
f,1
ẑx̂ = x̂(1− x̂)βf ′ êẑ,

Ê
f,2
ẑx̂ = ẑ(1 − ẑ)βf ′ êx̂.

Again using the fact that a parameter associated with a given face by definition vanish on the face, one can see from Equation (3)

that a face-based shape function has vanishing tangential components, except on the corresponding face. Hence, in order to ensure

that the resulting finite element approximation is conforming, it is crucial to enforce a consistent orientation of the face-based

shape functions between two adjacent elements.

3 Orientation Problem

As discussed in the previous section, the enhanced edge elements include additional degrees of freedom which correspond to the

element’s faces. In order to ensure the conformity of the resulting finite element approximation, the face-based shape functions

need to have a unique global parametrization, independently from the element local coordinate system, so as to enforce tangential

continuity across the element interface.

One can see from Equation (3) that each lowest-order face-based basis function is parallel to a specific unit vector. Taking

advantage of this property would consist in associating a face-based shape function with a unique pair of nodes, as done for the

Nédélec basis functions. However, this does not seem possible for the shape functions in Equation (3). Indeed, observe from

Equation (3) that each face-based shape function is parallel to two edges of the corresponding face, as displayed on Figure 3.

1
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Ê
2,f
x̂ŷ

Figure 3: Face-Based Shape Functions.

A simple yet effective way of resolving this consists in replacing the shape functions Ê
f,1
x̂ŷ and Ê

f,2
x̂ŷ with Ξ̂

f,1

x̂ŷ and Ξ̂
f,2

x̂ŷ defined

by:

Ξ̂
f,1

x̂ŷ := Ê
f,1
x̂ŷ + Ê

f,2
x̂ŷ ,

Ξ̂
f,2

x̂ŷ := Ê
f,1
x̂ŷ − Ê

f,2
x̂ŷ .

(4)

The redefined face-based shape functions Ξ̂
f,1

x̂ŷ and Ξ̂
f,2

x̂ŷ are represented by the dashed arrows on Figure 4.

3



1

2 3

4
x̂

ŷ
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Figure 4: Redefined Face-Based Shape Functions.

As illustrated on Figure 4, making use of the functions defined in Equation (4) yields a very natural one-to-one correspondence

between the face-based shape functions and the face diagonals and thus the pairs of their endpoints, thereby facilitating the as-

sembly of the face-based degrees of freedom. This approach also has the advantage of providing a consistency of implementation,

which facilitates the integration of the enhanced edge elements with the Nédélec elements in the lowest-order case.

4 Results

The improved effectiveness of the enhanced edge basis over the standard Nédélec basis is demonstrated by computing the

eigenvalues of a simple rectangular cavity formulated as follows:

∇×∇×E = ω2
E in Ω,

E× n = 0 on ∂Ω,

where Ω := [0, 1/ 3
√
10]3 is the domain, ∂Ω denotes the boundary of the domain, and E represents the electric field. It is

well-known that the eigenvalues which correspond to the above problem are given by

ωk,ℓ,m =
π

3
√
10

√

k2 + ℓ2 +m2, k, ℓ,m ∈ Z
+

0 . (5)

The solution error is measured as the relative error in the frequency of the calculated modes. For the sake of clarity, three non-

trivial modes have been selected in the numerical results presented in this section. More precisely, Mode 1, Mode 2 and Mode 3

respectively correspond to ω1,1,0, ω1,1,1 and ω2,1,1.

Using an affine mesh of rectangular shape produces the results displayed in Table 1 and Table 2 below, where h andN respectively

denote the element size and the number of elements, and the computational time is measured in seconds:

h N dof time Error1 Error2 Error3

1 1000 10830 2 6.73e-6 4.07e-3 7.79e-3

0.5 8000 91260 20 4.22e-7 1.03e-3 2.04e-3

0.25 64000 748920 322 2.64e-8 2.57e-4 5.12e-4

Table 1: Relative Frequency Error with Enhanced Elements on the Uniform Mesh.

h N dof time Error1 Error2 Error3

1 1000 2430 1 4.12e-3 4.12e-3 1.24e-2

0.5 8000 21660 6 1.03e-3 1.03e-3 3.09e-3

0.25 64000 182520 74 2.57e-4 2.57e-4 7.71e-4

Table 2: Relative Frequency Error with Nédélec Elements on the Uniform Mesh.

The convergence order is illustrated in Figure 5, where the thicker lines correspond to the enhanced edge elements.
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Figure 5: Using a Rectangular Mesh.

Although Mode 1 converges as O(h4) with the enhanced elements, the other modes yield the expected convergence rate, when

using either the enhanced or the Nédélec elements. In particular, the curves produced by the Nédélec elements for Mode 2 and

Mode 3 are hidden behind those obtained using the enhanced edge elements. It is more efficient to use Nédélec elements on

affine meshes because they produce fewer degrees of freedom.

Figure 6: Non-Affine Mesh.

Using the non-affine mesh given in Figure 6 produces the results summarized in Table 3 and Table 4:

h N dof time Error1 Error2 Error3

2.5 24 272 0.3 1.16e-3 1.12e-2 1.40e-2

1.25 192 2240 0.9 3.21e-4 2.79e-3 4.37e-3

0.625 1536 18176 2.74 8.23e-5 6.98e-4 2.00e-3

0.3125 12288 146432 18 2.07e-5 1.75e-4 2.75e-4

0.15625 98304 1175552 240 5.19e-6 4.37e-5 6.87e-5

Table 3: Relative Frequency Error with Enhanced Elements on the Non-Affine Mesh.

h N dof time Error1 Error2 Error3

2.5 24 186 0.2 2.41e-2 2.62e-2 6.19e-2

1.25 192 544 0.8 1.14e-2 1.28e-2 1.82e-2

0.625 1536 4480 1.29 8.18e-3 1.03e-2 1.35e-2

0.3125 12288 36352 6.5 7.38e-3 9.69e-3 1.23e-2

0.15625 98304 292864 58.1 7.18e-3 9.53e-3 1.19e-2

Table 4: Relative Frequency Error with Nédélec Elements on the Non-Affine Mesh.
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The variation of the error as a function of the mesh size is illustrated on Figure 7:
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Figure 7: Using a Non-Affine Mesh.

As predicted, Figure 3 shows that the enhanced elements provide a O(h2) convergence rate on the non-affine mesh. Figure 7

illustrates the limitations of the Nédélec elements on non-affine meshes. As shown in Table 4, refining the mesh brings no

significant improvement on the accuracy produced by the Nédélec elements on the non-affine mesh. Thus, we observe that, on

the non-affine mesh, the enhanced edge elements give improved accuracy and faster results, using significantly less degrees of

freedom.

5 Conclusion

The enhanced edge elements are specifically designed to optimize the accuracy of the finite element solution on non-affine

meshes. This optimization comes with the cost of additional degrees of freedom at the element-level. The bulk of the new

degrees of freedom is however shared between adjacent elements. When using affine meshes, it is more efficient to use Nédélec

elements, as the inclusion of the additional degrees of freedom has virtually no effect on the produced accuracy. However, on

non-affine meshes, the enhanced elements perform significantly better than the Nédélec elements, producing faster and more

accurate results for comparable number of degrees of freedom.
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