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Abstract. Algorithms are presented that enable the element matrices for the
standard finite element space, consisting of continuous piecewise polynomials
of degree n on simplicial elements in R

d, to be computed in optimal complex-
ity O(n2d). The algorithms (i) take account of numerical quadrature; (ii) are
applicable to non-linear problems; and, (iii) do not rely on pre-computed ar-
rays containing values of one-dimensional basis functions at quadrature points

(although these can be used if desired). The elements are based on Bernstein
polynomials and are the first to achieve optimal complexity for the standard
finite element spaces on simplicial elements.

1. Introduction

The classical finite element method, based on low order piecewise polynomial ap-
proximation using Lagrange shape functions in conjunction with mesh refinement,
offers geometric flexibility but suffers from relatively poor resolution. The spectral
method, on the other hand, achieves high resolution by employing a fixed mesh
(often a single element) in conjunction with very high degree polynomial approx-
imation, but suffers from a lack of geometric flexibility compared with the finite
element method. The spectral/hp-version finite element method aims to combine
the advantages of each approach by using high degree piecewise polynomials in a
finite element setting [15, 22, 24]. Whilst the theory of the spectral/hp-version fi-
nite element method is quite well-established, the algorithmic details and practical
implementation are not yet at the stage whereby the method can achieve its full
potential [25].

One of the major bottlenecks of the method lies in the element level computations
for the evaluation of the local stiffness matrices. The element stiffness matrices
for degree n approximation in d dimensions contain

(

n+d
n

)2
entries which means

that (even if each entry could be computed in O(1) operations) the overall cost of
computing the element matrix is at least O(n2d). Of course, the cost of computing
an individual entry is not just O(1) and numerical quadrature is often needed to
approximate the entries. Any quadrature rule must use at least O(nd) quadrature
points, meaning that a naive implementation would result in a cost of O(nd) per
entry, and a prohibitively high overall cost of O(n3d) for the assembly of the element
matrix.

The use of high order polynomials is typical of the spectral element method [5],
where one routinely sees computations using polynomials of degree n in the order
of 100s. The sum factorisation method goes back to Orszag [19] and is generally
considered to be the main reason why high order spectral methods can be efficiently
implemented [10, 15, 25].
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The key property needed to utilise the sum factorisation method is a tensorial
construction for the basis functions. For quadrilateral and hexahedral finite ele-
ments, the basis functions naturally have a tensor product structure and efficient
procedures have been developed to take advantage of this fact [18]. However, sim-
plicial elements do not have a tensor product structure and the natural bases for the
corresponding finite element spaces are non-tensorial. Typically, for simplicial ele-
ments Lagrange bases are used in the case of very low order approximation, whilst
hierarchic bases [1, 2, 6, 24] are used for higher orders of approximation. Although
both choices are natural, neither has the key tensor product structure needed to
exploit the sum factorisation technique.

Tensorial constructions for basis functions on triangular and tetrahedral ele-
ments are available [3, 8, 15, 26]. Of course, the effect of the non-tensorial nature
of the underlying domain persists and manifests itself in a lack of symmetry in the
basis functions (through the need to identify a preferred vertex in the case of tri-
angular elements) and in the corresponding degrees of freedom. By employing the
sum factorisation method in conjunction with such a tensorial element level basis,
Karniadakis and Sherwin [15] obtain an algorithm for the assembly of the element
matrix which achieves near optimal complexity O(n2d+1).

The desire to achieve optimal complexity prompted Eibner and Melenk [10] to
make use of a larger local polynomial space than the standard space Pn

d . The rather
novel idea behind this approach is to use the additional variables to control the
locations of the zeros of the basis functions. By arranging for the zeros to be located
at nodes of the quadrature rule and again taking advantage of sum factorisation and
a tensorial basis, the overall complexity is improved to the optimal count O(n2d).
Unfortunately, this comes at the price of using a non-standard approximation space
with larger numbers of degrees of freedom than the standard space (without a
corresponding improvement in the rate of convergence).

The foregoing developments represent important advances in tackling the prob-
lem of realising efficient and practical high order finite elements on simplicial el-
ements in optimal complexity. Nevertheless, the problem essentially remains un-
solved and the following questions remain:

• can the optimal complexity of O(n2d) operations be achieved for the stan-
dard space P

n
d?

and, if so,

• is this possible using a basis corresponding to a natural (e.g. symmetric)
choice of degrees of freedom?

The purpose of the present work is to address these questions. The need to develop
tensorial bases (in order to utilise sum factorisation) seems at odds with the non-
tensorial nature of the underlying element geometry, and it is perhaps therefore
rather surprising that the answer to both questions is positive.

The key idea is the use of Bernstein polynomials to construct a basis for the
standard H1-conforming finite element space consisting of continuous piecewise
polynomials as described in Section 2. Although Bernstein-Bézier representations
have a number of properties which make their use commonplace in computationally
demanding applications such as CAGD and visualisation [11, 13, 14, 17], their use
in finite element approximation has attracted virtually no attention [21] amongst
the finite element community. Recently, the use of Bernstein-Bézier bases for high
order finite element computation has been investigated by Kirby [16] in the case of
piecewise constant data.

At first glance, the Bernstein-Bézier basis is reminiscent of the Lagrange basis
on equally spaced nodes over the simplex. However, there is an essential difference
in that the degrees of freedom for the Bernstein-Bézier finite element are not values
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at these nodes (which is the case for Lagrange bases). Nonetheless, at least for
conceptual purposes, one can regard the nodes as degrees of freedom. Viewed from
this perspective, the Bernstein-Bézier elements are completely symmetrical and just
as natural as the Lagrange elements typically found in finite element textbooks.

Of course, the critical factor is the complexity required to assemble the element
matrices for the Bernstein-Bézier finite element and it is here that a remarkable
property of the Bernstein polynomials comes into play. Although not based on a
tensorial construction, the Bernstein-Bézier basis is rather unique in the respect
that it possesses the key properties needed for the sum factorisation algorithm
to be brought into play. This is exploited in Section 3 for the development of
highly efficient algorithms for the computation of the Bernstein-Bézier moments
of the coefficients in the underlying partial differential equation. The fact that the
Bernstein polynomials are amenable to the sum factorisation approach is vital, but
by itself is not sufficient to develop optimal element level algorithms. The remaining
ingredient is another property whereby the product of two Bernstein polynomials is
a (scaled) Bernstein polynomial. This property is exploited in Section 4 to develop
algorithms for the assembly of the element matrices in O(n2d) operations.

The algorithms developed in Sections 3 and 4 are the first that enable the element
matrices for the standard finite element space (continuous piecewise polynomials
of degree n on simplicial elements in R

d) to be assembled in optimal complexity
O(n2d). In addition, our algorithms: (i) take account of numerical quadrature;
(ii) are applicable to non-linear problems; and, (iii) do not rely on pre-computed
arrays containing values of one-dimensional basis functions at quadrature points
(although these can be used if desired). CPU timings are presented for each of the
algorithms showing the predicted growth rates with increasing polynomial degree.
Of course, the development of algorithms with optimal order complexity for the
computation of the element matrices and load vectors are just one component of
the finite element analysis, and in a practical implementation one must also take
into account issues such as memory transfer and addressing.

Standard multi-index notations will be used throughout. In particular, for α ∈

Z
d
+, we define |α| =

∑d
k=1 αk, α! =

∏d
k=1 αk! and

(

|α|
α

)

= |α|!/α!. If x ∈ R
d, then

we define xα =
∏d

k=1 x
αk

k . Given a pair α,β ∈ Z
d
+, β ≤ α if and only if βk ≤ αk,

k = 1, . . . , d and, in this case,
(

α
β

)

=
∏d

k=1

(

αk

βk

)

.

2. Bernstein-Bézier Finite Elements

2.1. Bernstein Polynomials. Let T = conv(x1,x2, . . . ,xd+1) be a non-degenerate
simplex in R

d. The set Dn
d (T ) = {xα : α ∈ In

d } consists of the domain points of T
defined by

xα =
1

n

d+1
∑

k=1

αkxk (1)

where In
d is the indexing set

In
d =

{

α ∈ Z
d+1
+ : |α| = n

}

. (2)

The barycentric coordinates of a point x ∈ R
d with respect to the simplex T are

given by the unique (d+ 1)-tuple λ = (λ1, . . . , λd+1) satisfying

x =

d+1
∑

k=1

λkxk; 1 =

d+1
∑

k=1

λk. (3)



4 MARK AINSWORTH, GAELLE ANDRIAMARO, AND OLEG DAVYDOV

For future reference, it is worth noting that

gradλk = −
|γk|

d|T |
nk (4)

where nk is the unit outward normal on the face γk of the simplex T that does
not have xk as a vertex, and |T | and |γk| denote the d- and (d − 1)-dimensional
measures of the element and the face respectively. The Bernstein polynomials of
degree n ∈ Z+ associated with T , defined by

Bn
α(x) =

(

n

α

)

λα, α ∈ In
d , (5)

possess a number of remarkable properties [17], such as the de Casteljau algorithm
for their efficient evaluation, that have led to their widespread use in the CAGD
and computer graphics communities. It is apparent that the Bernstein polynomials
are non-negative over the simplex T and, thanks to the multinomial theorem, sum
to unity. Simple algebra suffices to see that the product of Bernstein polynomials
is again a (scaled) Bernstein polynomial

Bm
αBn

β =

(

α+β

α

)

(

m+n
m

)Bm+n
α+β , α ∈ Im

d ,β ∈ In
d , (6)

whilst the integral of a Bernstein polynomial also has a simple form [17]:

∫

T

Bn
α(x) dx =

|T |
(

n+d
d

) , α ∈ In
d . (7)

The Bernstein polynomials are linearly independent [17]. This, coupled with the
observation that the cardinality of the indexing set In

d coincides with the dimension
(

n+ℓ
ℓ

)

of the space P
n
d , means that any polynomial u ∈ P

n
d has a unique BB-form

representation

u =
∑

α∈In

d

cαB
n
α. (8)

The uniqueness of the BB-vector, {cα : α ∈ In
d }, formed from the coefficients of the

BB-form means that the set Σn
d = {φα : α ∈ In

d }, consisting of linear functionals
on P

n
d defined by the rules

P
n
d ∋ u 7→ φα(u) = cα, α ∈ In

d , (9)

is unisolvent with respect to P
n
d , i.e.

u = 0 ⇐⇒ φα(u) = 0 for all α ∈ In
d . (10)

Consequently, the triple (T,Σn
d ,P

n
d ) is a finite element in the sense of [4, 7], which

will be referred to as the Bernstein-Bézier finite element (BB-FEM) of degree n on
T .

A Lagrange finite element would correspond to choosing φα(u) to be the value of
the polynomial u at the domain point xα, establishing an obvious correspondence
between domain points and degrees of freedom. Although the Bernstein-Bézier and
Lagrange finite elements coincide in the case n = 1, the elements differ for higher
orders n > 1. Occasionally, with a harmless abuse of nomenclature, it will be
convenient to identify the domain point xα with the local degree of freedom φα.
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2.2. Bernstein-Bézier Finite Element Spaces on a Partition. Let ∆ = {T }
be a regular partitioning (triangulation) of a bounded domain Ω ⊂ R

d into the
union of disjoint d-simplices T in the usual sense [4, 7]. In particular, the non-
empty intersection T ∩ T ′ of any distinct pair T , T ′ ∈ ∆ is an s-simplex in R

d

formed by the common vertices x1, . . . , xs+1 of both T and T ′, so that

Dn
s (T ∩ T ′) = Dn

d (T ) ∩ Dn
d (T

′)

for some appropriate 0 ≤ s ≤ d. This identity means that the domain points on
neighbouring simplices match on the shared interface or, interpreted another way,
that the local degrees of freedom are compatible between neighbouring elements.

Let u be a piecewise polynomial of degree n defined on the partition ∆, i.e. for
each T ∈ ∆, u|T = pT ∈ P

n
d (T ). Then pT = pT ′ on T ∩ T ′ if and only if the BB-

vectors of pT and pT ′ agree on the domain points Dn
s (T ∩T ′). In other words, if the

values of the local degrees of freedom in the finite elements (T,Σn
d (T ),P

n
d (T )) and

(T ′,Σn
d (T

′),Pn
d (T

′)) agree on the common domain points, then the corresponding
local functions pT and pT ′ will be continuous across the interface between the
elements, and vice versa. The same argument extends to intersections formed by
three (or more) simplices belonging to ∆ and, as a consequence, we obtain:

Theorem 1. Let Sn
d (∆) denote the finite element space defined over the parti-

tion ∆ using Bernstein-Bézier finite elements (T,Σn
d(T ),P

n
d (T )), T ∈ ∆. Then

Sn
d (∆) coincides with the standard (H1-conforming) finite element space consisting

of continuous piecewise polynomials of degree n on ∆: i.e.

Sn
d (∆) =

{

u ∈ C0(Ω) : u|T ∈ P
n
d (T ), T ∈ ∆

}

. (11)

The result shows that Bernstein polynomials may be used to construct a ba-
sis for the standard H1-conforming finite element space consisting of continuous
piecewise polynomials. Although Bernstein-Bézier representations have a number
of properties which make them attractive for use in computationally demanding ap-
plications such CAGD and visualisation [11, 13, 14, 17], but the possibility of using
them for finite element approximation has attracted virtually no attention amongst
practitioners.

3. Evaluation of Bernstein-Bézier Moments

Let T ∈ ∆ be a simplex and let f : T → X be a given smooth function, where X
is a vector space (typically R, Rd or Rd×d). The Bernstein-Bézier moments µn

α(f)
of degree n for the function f on T are defined by:

µn
α(f) =

∫

T

Bn
α(x)f(x) dx, α ∈ In

d . (12)

In general, it is necessary to approximate these moments using an appropriate
quadrature rule consisting of at least O(qd) nodes, with q ≥ n. If one were to
simply employ the de Casteljau algorithm [17] to directly evaluate the Bernstein
polynomial at each quadrature point at a cost of O(nd+1) operations for each index
α ∈ In

d , then the overall cost of evaluating the moments {µn
α(f) : α ∈ In

d } would
be O(n2d+1qd). Our objective in this section is to develop an algorithm whereby
all of the moments can be evaluated at a cost of O(qd+1) operations.

Of course, if the function f is constant over the simplex T , then advantage may
be taken of the closed form for the moments

µn
α(f) =

|T |
(

n+d
d

)f|T , α ∈ In
d (13)

which follows from (7).
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3.1. Bernstein-Bézier Bases and the Duffy Transformation. The Duffy trans-
formation [8, 9] applied to a point t = (t1, t2, . . . , td) ∈ [0, 1]d may be defined recur-
sively as follows:

λ1 = t1

λ2 = t2(1 − λ1)

λ3 = t3(1 − λ1 − λ2)
...

λd = td(1 − λ1 − λ2 − . . .− λd−1)

λd+1 = 1− λ1 − λ2 − . . .− λd.

(14)

More generally, if T = conv(x1,x2, . . . ,xd+1), then the Duffy transformation asso-
ciated with the simplex T is defined by the rule

x(t) =

d+1
∑

k=1

λkxk, (15)

where λk are given by (14), and maps the unit cell [0, 1]d onto the simplex T .
The tensor product structure can be exploited in a variety of ways, and helps

account for the widespread usage of the Duffy transformation in conjunction with
simplicial finite elements [15, 26]. The Stroud conical quadrature rule [23] is conve-
niently derived using this transformation to first express the integral of a function
f over a simplex T in the form:

∫

T

f(x) dx =

|T |

d!

∫ 1

0

dt1(1− t1)
d−1

∫ 1

0

dt2(1− t2)
d−2 · · ·

∫ 1

0

dtd(f ◦ x)(t).

The q-point Gauss-Jacobi quadrature rule [23]:
∫ 1

0

(1 − s)asbg(s) ds ≈

q
∑

j=1

ω
(a,b)
j g(ξ

(a,b)
j ) (16)

has precision 2q − 1, the weights {ω
(a,b)
j } are all positive and the nodes {ξ

(a,b)
j }

are located on the interval [0, 1]. The integral over the variable tk is approximated
using the Gauss-Jacobi rule with a = d− k and b = 0, then we arrive at the q-point
Stroud rule [23]:

∫

T

f(x) dx ≈
|T |

d!

q
∑

i1=1

ω
(d−1,0)
i1

q
∑

i2=1

ω
(d−2,0)
i2

· · ·

q
∑

id=1

ω
(0,0)
id

f(xi1,i2,...,id), (17)

which has positive weights, and consists of qd nodes given by

xi1,i2,...,id = x(ξ
(d−1,0)
i1

, ξ
(d−2,0)
i2

. . . , ξ
(0,0)
id

) (18)

for 1 ≤ i1, i2, . . . , id ≤ q. We shall make use of the Stroud quadrature rule later to
approximate the Bernstein-Bézier moments.

An important observation, for our present purposes, is the favourable behaviour
of the Bernstein polynomials under the Duffy transformation:

Lemma 1. Let Bm
k (t) =

(

m
k

)

tk(1− t)m−k, k ∈ {0, 1, . . . ,m}, denote the univariate
Bernstein polynomials on the unit interval [0, 1]. Then,

Bn
α(x(t)) = Bn

α1
(t1)B

n−α1

α2
(t2) · · ·B

n−α1−...−αd−1

αd
(td) (19)

where α = (α1, . . . , αd+1) ∈ In
d and x(t) denotes the Duffy transformation associ-

ated with T .
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Proof. It is not difficult to show that (14) may be written in the form

λ1 = t1

λ2 = t2(1− t1)

λ3 = t3(1− t1)(1 − t2)
...

λd = td(1− t1)(1 − t2) . . . (1− td−1)

λd+1 = (1 − t1) . . . (1− td).

Now,

Bn
α(x(t)) =

(

n

α

)

λα1

1 λα2

2 . . . λ
αd+1

d+1

and therefore, by inserting the above expressions for λk, collecting terms and sim-
plifying and, on observing that

(

n

α

)

=

(

n

α1

)(

n− α1

α2

)

· · ·

(

n− α1 − . . .− αd−1

αd

)

,

we arrive at the claimed result. �

Property (19) is peculiar to the Bernstein-Bézier finite element and is not shared
by other non-tensorial finite element bases. The Bernstein-Bézier finite element
basis is rather unique in the respect that it is not based on a tensorial construc-
tion [8, 15, 26] but nevertheless possesses the key property of a tensorial basis needed
to take advantage of the sum factorisation technique. The remainder of this section
is concerned with describing how the technique may be exploited for the efficient
implementation of the Bernstein-Bézier finite element.

3.2. Application to Evaluation of Bernstein Polynomials. We begin by illus-
trating how property (19) can be exploited for the efficient evaluation of a Bernstein
polynomial of the form

u(x) =
∑

α∈In

d

cαB
n
α(x) (20)

at all of the nodes xi1,i2,...,id of the Stroud conical quadrature rule given in equa-
tion (18). One approach would consist of applying the de Casteljau algorithm to
evaluate u at each quadrature point at a cost of O(nd+1) operations, giving an over-
all cost of O(nd+1qd) operations to evaluate at all quadrature points. Fortunately,
there is an efficient alternative.

Changing variable using the Duffy transformation and using property (19) gives
the alternative form

(u ◦ x)(t) =

n
∑

α1=0

Bn
α1
(t1)

n−α1
∑

α2=0

Bn−α1

α2
(t2) . . .

n−α1−...−αd−1
∑

αd=0

Bn−α1−...−αd−1

αd
(td)cα.



8 MARK AINSWORTH, GAELLE ANDRIAMARO, AND OLEG DAVYDOV

Algorithm 1: Evaluate(C0, q)

Input: Array C0 corresponding to BB-vector {cα : α ∈ In
d } of a polynomial

u, and index q for number of points.
Output: Array Cd with entry [i1, . . . , id] equal to value of u at Stroud node.
for ℓ = d to 1 do

Cd−ℓ+1 = EvalStep(Cd−ℓ, ℓ, q);

return Cd;

Algorithm 2: EvalStep(Cin, ℓ, q)

Input: Array Cin and index ℓ ∈ {1, . . . , d}.
Output: Updated array Cout with index αℓ switched to iℓ.
for iℓ = 1 to q do

ξ = ξ
(d−ℓ, 0)
iℓ

; s = 1− ξ; r = ξ/s;

foreach (α1, . . . , αℓ−1, •) ∈ In
ℓ−1 do

w = sn−α1−...−αℓ−1 ;

for αℓ = 0 to n− α1 − . . .− αℓ−1 do

foreach (iℓ+1, . . . , id) ∈ {1, . . . , q}d−ℓ do

//w given by B
n−α1−...−αℓ−1

αℓ
(ξ

(d−ℓ,0)
iℓ

) here.

Cout[α1, . . . , αℓ−1, iℓ, iℓ+1, . . . , id]
+= w ∗ Cin[α1, . . . , αℓ−1, αℓ, iℓ+1 . . . , id];

w ∗= r ∗ (n− α1 − . . .− αℓ)/(1 + αℓ);

return Cout;

An algorithm for computing the values of u at the Stroud nodes efficiently can
be developed based on expressing this identity in recursive form:

C0(α1, . . . , αd−1, αd) = cα1,...,αd−1,αd

C1(α1, . . . , αd−1, id) =

n−α1−...−αd−1
∑

αd=0

Bn−α1−...−αd−1

αd
(ξ

(0,0)
id

)C0(α1, α2, . . . , αd)

C2(α1, . . . , id−1, id) =

n−α1−...−αd−2
∑

αd−1=0

Bn−α1−...−αd−2

αd−1
(ξ

(1,0)
id−1

)C1(α1, . . . , αd−1, id)

...

Cd(i1, . . . , id−1, id) =

n
∑

α1=0

Bn
α1
(ξ

(d−1,0)
id

)Cd−1(α1, . . . , id−1, id)

(21)
where the indices in the ℓ-th step range over α1, α2, . . . , αd−ℓ such that (α1, . . . , αd−ℓ, •) ∈
In
d−ℓ and 1 ≤ id−ℓ+1, . . . , id ≤ q. The values of the Bernstein polynomial at the

Stroud nodes are then given by the components of the final array Cd produced
by (21):

u(xi1,...,id−1,id) = Cd(i1, . . . , id−1, id). (22)

The approach suggested by the recursion relations (21) is sometimes described as
the sum factorisation procedure [10, 15, 19].

The routine Evaluate defined in Algorithm 1 evaluates by applying the procedure
EvalStep defined in Algorithm 2 recursively to the BB-vector for u:
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Theorem 2. Let u be the Bernstein polynomial (20) and let C be the corresponding
BB-vector {cα : α ∈ In

d }. Let U denote the array given by U = Evaluate(C, q).
Then,

u(xi1,...,id) = U [i1, . . . , id] (23)

for 1 ≤ i1, . . . , id ≤ q. Moreover, the number of operations needed to compute U is
of order O(qd+1(e(n+1)/q − 1)).

Proof. We begin by considering the effect of a single application of algorithm
EvalStep(Cin, ℓ) on an array Cin for ℓ ∈ {1, ..., d}. Observe that for given indices
(α1, . . . , αℓ−1, t) ∈ In

ℓ and iℓ ∈ {1, . . . , q}, the local variable w appearing in the list-

ing of EvalStep is initially set to be w = sn−α1−...−αℓ−1 , where s = 1− ξ
(d−ℓ,0)
iℓ

, and
then updated on each passage through the loop over αℓ = 0, . . . , n−α1− . . .−αℓ−1

by multiplying through by a factor r(n − α1 − . . . − αℓ)/(1 + αℓ). We claim
that the value of w used to update Cout when the loop index is αℓ is given by

B
n−α1−...−αℓ−1

αℓ
(ξ

(d−ℓ,0)
iℓ

). This can be seen by noting that the Bernstein polynomi-
als satisfy the recurrence relation

Bm
0 (t) = (1− t)m; Bm

k+1(t) = r
m− k

1 + k
Bm

k (t), k = 0, 1, . . . ,m− 1 (24)

where r = t/(1 − t), choosing m = n − α1 − . . . − αℓ−1, k = αℓ and t = ξ
(d−ℓ,0)
iℓ

,
and using induction.

Algorithm EvalStep updates all entries [α1, . . . , αℓ−1, iℓ, . . . , id] of the output ar-
ray Cout, satisfying (α1, . . . , αℓ−1, •) ∈ In

ℓ and 1 ≤ iℓ, . . . , id ≤ q, with the sum over
αℓ ∈ {0, . . . , n−α1−. . .−αℓ−1} of the quantities w∗Cin[α1, . . . , αℓ−1, αℓ, iℓ+1 . . . , id]

where, as shown above, w = B
n−α1−...−αℓ−1

αℓ
(ξ

(d−ℓ,0)
iℓ

). It follows that Cout is com-

puted in terms of Cin by the same expression as the one used to obtain Cd−ℓ+1

from Cd−ℓ in the recurrence relations (21):

Cout[α1, . . . , αℓ−1, iℓ, iℓ+1, . . . , id] =
n−α1−...−αℓ−1

∑

αℓ=0

Bn−α1−...−αℓ−1

αℓ
(ξ

(d−ℓ,0)
iℓ

)Cin[α1, . . . , αℓ−1, αℓ, iℓ+1, . . . , id].

This, coupled with the fact that C0 is chosen to be the coefficient vector for the
polynomial u in Bernstein-Bézier form, means that the resulting array Cd indeed
gives the values of the polynomial u at the Stroud points.

Finally, a single application of EvalStep with index ℓ consists of q outer loops
over iℓ, each of which requires dim In

ℓ−1 loops over the index α1, . . . , αℓ−1 and

n−α1− . . .−αℓ−1 loops over αℓ, whilst the innermost update of Cout requires qd−ℓ

loops over the indices iℓ, . . . , id. The complexity is dominated by the innermost
loop which is executed qd−ℓ+1 · dimP

n
ℓ times, each time requiring one addition and

one multiplication operation. The total complexity of computing Cd is therefore of
order

qd+1
d

∑

ℓ=1

(

n+ ℓ

ℓ

)

q−ℓ.

By considering the Taylor polynomial of degree d for the function (1 − x)−(n+1),
evaluated at x = 1/q, and using Taylor’s Theorem, it is not difficult to show that

(

q

q − 1

)n+1
(

1−O(q−(d+1))
)

≤

d
∑

ℓ=0

(

n+ ℓ

ℓ

)

q−ℓ ≤

(

q

q − 1

)n+1

.
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Making use of the estimate

e(n+1)/q ≤

(

q

q − 1

)n+1

≤ e(n+1)/(q−1).

gives the claimed result. �

Algorithm EvalStep makes use of the recurrence relation (24) for evaluating the
univariate Bernstein polynomials, which becomes unstable when the argument is
close to unity. However, one could modify EvalStep to exploit the backward recur-
rence relation

Bm
m(t) = tm; Bm

k−1(t) =
1− t

t

k

m− k + 1
Bm

k (t), k = m, . . . , 1 (25)

if the argument t > 1/2, whilst using forward recurrence (24) if t ≤ 1/2.
Typically, the number of quadrature points q is chosen to be the degree n of the

polynomial (or a small multiple thereof). Theorem 2 shows that one can compute
the values of a degree n polynomial at all of the Stroud points in just O(qd+1)
operations: i.e. the algorithm evaluates u at all qd Stroud points with the same
complexity as using the de Casteljau algorithm to evaluate at a single point. Of
course, the points at which we are evaluating u will not form a regular subdivision
of the simplex, although efficient algorithms are available [20] to deal with that
case.

The sum factorisation method is generally used in conjunction with pre-computed
values of the univariate basis functions at quadrature points to develop efficient
finite element procedures [10, 15]. The analogue in our case would consist of pre-
computing the values of the univariate Bernstein polynomials at the Gauss-Jacobi
points and dispensing with the local variable w in EvalStep in favour of directly
accessing a stored value of the basis function. However, the overall complexity
would not be improved beyond that already attained using the algorithm presented
in Theorem 2 which does not require pre-computing, or perhaps more importantly
accessing of, stored values of basis functions. The latter point is important given
that memory access on some kinds of hardware can be orders of magnitude slower
than the cost of performing floating point operations.

One is often interested in derivatives of a polynomial u written in Bernstein-
Bézier form (20). For example, on using the chain rule and (4), we find that

gradu = −
1

d|T |

d+1
∑

k=1

|γk|
∂u

∂λk
nk (26)

where the partial derivatives are taken regarding λ1, . . . , λd+1 as independent vari-
ables. Likewise, higher order derivatives can be expressed as a linear combination
of unconstrained partial derivatives of u with respect to the variables representing
the barycentric coordinates. For a given multi-index ν with |ν| ≤ n, the ν-th
derivative of u may be expressed in Bernstein-Bézier form:

∂|ν|u

∂λν
=

n!

(n− |ν|)!

∑

α∈I
n−|ν|
d

cα+νB
n−|ν|
α . (27)

The derivative is a Bernstein polynomial of degree n− |ν| with BB-vector given by

cνα =
n!

(n− |ν|)!
cα+ν , α ∈ I

n−|ν|
d .

For convenience, if C denotes BB-vector of u, then we shall denote the BB-vector
of the derivative ∂νu using the shorthand notation

∂νC = {n!cα+ν/(n− |ν|)! : α ∈ I
n−|ν|
d }. (28)
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Of course, if |ν| exceeds the order n of the polynomial, then the derivative is trivial.

Corollary 1. Let u denote the Bernstein polynomial (20) and C be the corre-
sponding BB-vector. Given ν ∈ Iℓ

d, 0 ≤ ℓ ≤ n, let Uν denote the array given by
Uν = Evaluate(∂νC, q). Then,

∂|ν|u

∂λν
(xi1,...,id) = Uν [i1, . . . , id] (29)

for 1 ≤ i1, . . . , id ≤ q. Moreover, the number of operations required to compute Uν

is of order O(qd(e(n+1−ℓ)/q − 1)).

3.3. Application to Evaluation of Bernstein-Bézier Moments. The trans-
formation property (19) can be similarly exploited in the computation of the Bernstein-
Bézier moments {µn

α(f) : α ∈ In
d }. The starting point is again a change of variable

using the Duffy transformation in conjunction with property (19) to give

µn
α(f) =

|T |

d!

∫ 1

0

dtdB
n−α1−...−αd−1

αd
(td)

×

∫ 1

0

dtd−1(1 − td−1)B
n−α1−...−αd−2

αd−1
(td−1)

· · ·

×

∫ 1

0

dt2(1− t2)
d−2Bn−α1

α2
(t2)

×

∫ 1

0

dt1(1− t1)
d−1Bn

α1
(t1)(f ◦ x)(t)

(30)

which leads to the following recursion relations

F 0(t1, t2, . . . , td) = (f ◦ x)(t)

F 1(α1, t2, . . . , td) =

∫ 1

0

dt1(1− t1)
d−1Bn

α1
(t1)F

0(t1, t2, . . . , td)

F 2(α1, α2, . . . , td) =

∫ 1

0

dt2(1− t2)
d−2Bn−α1

α2
(t2)F

1(α1, t2, . . . , td)

...

F d(α1, α2, . . . , αd) =

∫ 1

0

dtdB
n−α1−...−αd−1

αd
(td)F

d−1(α1, α2, . . . , td),

(31)

with the moments given by

µn
α(f) =

|T |

d!
F d(α1, α2, . . . , αd). (32)

We evaluate the integrals appearing in (31) using the Stroud conical quadrature
rule (17), which amounts to replacing the integral defining F k in (31) by the Gauss-
Jacobi rule (16) with weights a = d − k and b = 0. This leads to the following
recursion relations for computing the approximate moments µn

α(f) (we shall not
distinguish between true quantities and their approximations using the quadrature



12 MARK AINSWORTH, GAELLE ANDRIAMARO, AND OLEG DAVYDOV

Algorithm 3: Moment(F 0, q)

Input: Array F 0 corresponding to values of a function f at Stroud nodes.
Output: Array F d composed of Bernstein-Bézier moments of f using Stroud

rule.
for ℓ = 1 to d do

F ℓ = MomentStep(F ℓ−1, ℓ, q);

return F d;

Algorithm 4: MomentStep(F in, ℓ, q)

Input: Array F in and index ℓ ∈ {1, . . . , d}.
Output: Updated array F out with index iℓ switched to αℓ.
for iℓ = 1 to q do

ξ = ξ
(d−ℓ, 0)
iℓ

; ω = ω
(d−ℓ, 0)
iℓ

; s = 1− ξ; r = ξ/s;

foreach (α1, . . . , αℓ−1, •) ∈ In
ℓ−1 do

w = ω ∗ sn−α1−...−αℓ−1 ;

for αℓ = 0 to n− α1 − . . .− αℓ−1 do

foreach (iℓ+1, . . . , id) ∈ {1, . . . , q}d−ℓ do

//w given by ω
(d−ℓ, 0)
iℓ

B
n−α1−...−αℓ−1

αℓ
(ξ

(d−ℓ,0)
iℓ

) here.

F out[α1, . . . , αℓ−1, αℓ, iℓ+1, . . . , id]
+= w ∗ F in[α1, . . . , αℓ−1, iℓ, iℓ+1 . . . , id];

w ∗= r ∗ (n− α1 − . . .− αℓ)/(1 + αℓ);

return F out;

rules):

F 0(i1, i2, . . . , id) = (f ◦ x)(ξ
(d−1,0)
i1

, ξ
(d−2,0)
i2

, . . . , ξ
(0,0)
id

)

F 1(α1, i2, . . . , id) =

q
∑

i1=1

ω
(d−1,0)
i1

Bn
α1
(ξ

(d−1,0)
i1

)F 0(i1, i2, . . . , id)

F 2(α1, α2, . . . , id) =

q
∑

i2=1

ω
(d−2,0)
i2

Bn−α1

α2
(ξ

(d−2,0)
i2

)F 1(α1, i2, . . . , id)

...

F d(α1, α2, . . . , αd) =

q
∑

id=1

ω
(0,0)
id

Bn−α1−...−αd−1

αd
(ξ

(0,0)
id

)F d−1(α1, α2, . . . , id)

(33)
where the indices in the k-th step range over the values 0 ≤ α1, α2, . . . , αk ≤ n
subject to α1 +α2 + . . .+αk ≤ n, and 1 ≤ ik+1, . . . , id ≤ n. The non-negativity of
the Bernstein polynomials along with the weights of the Gauss-Jacobi quadrature
rules means that the quadrature rule, viewed as being applied to the data f , is
positive.

The system (33) has obvious similarities with the system (21) used in the evalu-
ation of a Bernstein polynomial. The main differences are that summation over αℓ

is replaced by summation over iℓ, and that the quadrature weight ω
(d−ℓ,0)
iℓ

appears
as an additional factor in the summand. The procedure MomentStep defined in
Algorithm 4 reflects these differences but shares strong similarities with EvalStep.
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Figure 1. CPU time required for computation of moments us-
ing Algorithm 3 compared with same approach using precomputed
arrays of values of basis functions at quadrature points.

We have the following consequence of Theorem 2:

Corollary 2. Let T be a simplex in d-dimensions and f : T → X be a smooth
function, with X a vector space. Let F be the array corresponding to the values
of f at the Stroud nodes on the simplex T (c.f. the first equation of (33)), and
define M = Moment(F, q). Then, the Bernstein-Bézier moments of f over T ,
approximated using the Stroud rule, are given by

µn
α(f) =

|T |

d!
M [α1, α2, . . . , αd], α ∈ In

d . (34)

Moreover, the number of operations needed to compute M is of order qd+1(e(n+1)/q−
1)Op(X), where Op(X) is the cost of performing the operation y += c∗x, for given
vectors x, y ∈ X and a scalar c.

Proof. Virtually identical to that of Theorem 2 after observing that the innermost
loop of MomentStep is executed the same number of times as in EvalStep and
costs Op(X). �

The computation of the values of the data f at the Stroud points can be accom-
plished using an algorithm based on (14) which involves O(qd) operations and qd

function evaluations. We shall leave the precise details as an (easy) exercise.
Figure 1 shows the growth of the CPU time required to compute the moment

vector with the polynomial degree using Algorithm 3 (obtained using a Dell Preci-
sion T7400 workstation with Xeon 3.2GHz processor and 32Gb RAM, using C++
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and the gcc compiler (version 4.1.2)). The number of quadrature points q is taken
to be twice the polynomial degree n. The CPU time grows as O(nd+1) as predicted
by Corollary 2. For comparison, results are presented in the case when the uni-
variate Bernstein-Bézier functions are evaluated on the fly (as in Algorithm 4) and
when the values at the quadrature points are precomputed and stored on disc. It
is observed that the difference in CPU time is negligible.

3.4. Evaluation of Moments in the Non-Linear Case. Let f : T×R×R
d → X

be a given smooth function, where X is again a vector space. The finite element
approximation of non-linear problems often entails the computation of the moments
µn
α(u, f), α ∈ In

d , with respect to the current finite element iterate u: e.g.

µn
α(u, f) =

∫

T

Bn
α(x)f(x;u(x); gradu(x)) dx. (35)

The current finite element iteration u is expressed in Bernstein-Bézier form (20) and
as a consequence, by composing the procedures described above, we can construct
an efficient procedure to evaluate the non-linear moments:

Corollary 3. Let f : T × R× R
d → X be a smooth function, where X is again a

vector space and u be a Bernstein polynomial (20) with BB-vector C. Let M denote
the array computed as follows:

• U = Evaluate(C, q);

• Uν = Evaluate(∂νC, q), ν ∈ I1
d and compute gradU using (26);

• set F [i1, . . . , id] = f(xi1,...,id ;U [i1, . . . , id]; gradU [i1, . . . , id]);

• M = Moment(F, q).

Then, M contains the Stroud approximation of the non-linear Bernstein-Bézier mo-
ments µn

α(u, f), α ∈ In
d , and the process needed to compute M requires O(qd+1(e(n+1)/q−

1))Op(X) operations.

The evaluation of moments involving higher order derivatives of the polynomial u
could be achieved in the same complexity by extending the second step to compute
the relevant higher derivatives.

The algorithms presented in this section show that (the Stroud approximations
of) the Bernstein-Bézier moments can be computed efficiently, even in the case
of non-linear problems where the integrand depends on the current finite element
approximation. Furthermore, the moments are available in closed form in the case
of piecewise constant data over a triangulation.

4. Optimal Order Element Level Computations

Let Ω ⊂ R
d be a polyhedral domain with boundary ∂Ω = ΓD ∩ ΓN , where ΓD

and ΓN are disjoint. Consider the model problem of finding u ∈ H1
D(Ω) such that

B(u;u, v) = L(u; v) ∀v ∈ H1
D(Ω) (36)
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Algorithm 5: Multinomial(A,m, n)

Input: Precomputed binomial coefficients {Cp+q
p : 0 ≤ p ≤ m, 0 ≤ q ≤ n}.

Output: A such that Aαβ =
(

α+β
α

)

/
(

m+n
m

)

, α ∈ Im
d , β ∈ In

d . Note: Sums
appearing in loop conditions should be stored, and not recomputed
(as shown here for simplicity).

for α1 = 0 to m do

for β1 = 0 to n do

w1 = Cα1+β1
α1

/Cm+n
m ;

for α2 = 0 to m− α1 do

for β2 = 0 to n− β1 do

w2 = w1 ∗ C
α2+β2
α2

;
...

for αd = 0 to m− α1 − . . .− αd−1 do

for βd = 0 to n− β1 − . . .− βd−1 do

wd = wd−1 ∗ C
αd+βd

αd
;

wd+1 = wd ∗ C
m−α1−...−αd+n−β1−...−βd

m−α1−...−αd
;

> Aαβ = wd+1;

...

where H1
D(Ω) is the usual Sobolev space with vanishing traces on ΓD and the forms

B and L are given by

B(w;u, v) =

∫

Ω

grad v ·A(x, w(x), gradw(x)) · gradu

+

∫

Ω

vb(x, w(x), gradw(x)) · gradu

+

∫

Ω

c(x, w(x), gradw(x))uv

+

∫

ΓN

cN (x, w(x))uv ds

and

L(w; v) =

∫

Ω

f(x, w(x), gradw(x))v dx+

∫

ΓN

fN(x, w(x))v ds.

We shall not dwell on formulating conditions on the data under which the above
problem is well-posed but shall assume this to be the case. We note that the above
formulation is sufficiently general as to encompass a very broad class of non-linear
partial differential equations.

One of the major bottlenecks in finite element codes, particularly in the case of
higher order elements, lies in the assembly of the global finite element system. This
entails the computation of element level contributions to the global load vector f ,
given (in the linear case) by

fT
α =

∫

T

f(x)Bn
α(x) dx, α ∈ In

d (37)

and element level contributions to the global system matrix B, given (in the linear
case) by

BT
αβ =

∫

T

(

gradBn
β ·A(x) gradBn

α +Bn
βb(x) · gradB

n
α + c(x)Bn

βB
n
α

)

dx (38)
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Algorithm 6: MassMat(M , n, {µ2n
α (c),α ∈ I2n

d })

Input: Bernstein-Bézier moments {µ2n
α (c) : α ∈ I2n

d } computed with
q = n+ 1 quadrature points.

Output: Element mass matrix M .

Code as in Multinomial(M , n, n) with the line
> Aαβ = wd+1;

replaced with the line
> Mαβ = wd+1 ∗ µ

2n
α+β(c);

for α, β ∈ In
d .

The element load vector contains
(

n+d
n

)

entries which coincide with the Bernstein-
Bézer moments of the data f :

fT
α =

∫

T

f(x)Bn
α(x) dx = µn

α(f), α ∈ In
d . (39)

The moments can be approximated using the Stroud conical product rule with
q = n + 1 points in O(nd+1) operations thanks to Corollary 2. Moreover, the
same conclusion holds also in the non-linear case using the approach described in
Corollary 3.

The element matrix BT contains
(

n+d
n

)2
entries which means that (even if each

entry could be computed in O(1) operations) the overall cost of computing the
element matrix is at least O(n2d). It is clear that the element stiffness matrix is
the bottleneck in the assembly of the finite element system.

The algorithms presented in this section enable the element matrix for the
Bernstein-Bézier finite element to be assembled in complexity O(n2d) operations.
Thus, the algorithms attain optimal complexity for the assembly of the element
matrix. Naturally, the contributions from elements belonging to the (lower di-
mensional) boundary ΓN can be obtained using exactly the same techniques at a
complexity of O(n2d−2) operations. The main idea consists of exploiting the re-
sults of Corollaries 2 and 3 for the efficient computation of the Bernstein-Bézier
moments of the data. These results apply to the case of both linear and non-linear
partial differential equations. However, for ease of notation, we shall present the
results for the linear case. It is nevertheless worth emphasising that all of the con-
clusions extend to the general non-linear case, with the only difference being that
the non-linear moments are computed using the procedure of Corollary 3 instead
of Corollary 2.

4.1. Mass Matrix. The element mass matrix MT for degree n polynomials in R
d

has dimension
(

n+d
d

)

×
(

n+d
d

)

, with entries given by

MT
αβ =

∫

T

c(x)Bn
α(x)B

n
β(x) dx, α,β ∈ In

d . (40)

The entries are approximated using the Stroud conical rule based on q = n + 1
points. One of the consequences of the identity (6) is that the entries in the mass
matrix can be written in terms of the Bernstein-Bézier moments of c of order 2n,

MT
αβ =

(

α+β

α

)

(

2n
n

) µ2n
α+β(c), α,β ∈ In

d . (41)

This observation forms the basis for an optimal order algorithm which enables the
element mass matrix to be constructed in O(n2d) operations but requires an ap-
propriate algorithm for the evaluation of the multinomial coefficients. A simple
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Algorithm 7: StiffMat(S, n, {µ2n−2
α (A),α ∈ I2n−2

d })

Input: Bernstein-Bézier moments {µ2n−2
α (A) : α ∈ I2n−2

d } computed with
q = n+ 1 quadrature points.

Output: Element stiffness matrix S.

Compute
> for k = 1 to d+ 1 do

> for ℓ = 1 to d+ 1 do

> µ̃
(k,ℓ)
α = gradλℓ · µ

2n−2
α (A) · gradλk, α ∈ I2n−2

d ;

Remaining code as in Multinomial(S, n− 1, n− 1) with the line
> Aαβ = wd+1;

replaced with the lines
> for k = 1 to d+ 1 do

> for ℓ = 1 to d+ 1 do

> Sα+ek,β+eℓ
+= n2 ∗ wd+1 ∗ µ̃

(k,ℓ)
α+β;

algorithm is presented in Algorithm 5, although we note that the treatment of
expressions involving large multinomial coefficients is typical when dealing with
Bernstein polynomials and requires some care [12] to avoid overflow whilst main-
taining efficiency.

Theorem 3. The element mass matrix of degree n in R
d can be approximated and

assembled using the Stroud conical quadrature rule with q = n+1 points in O(n2d)
operations using Algorithm MassMat.

Proof. Thanks to Corollary 2, the Bernstein-Bézier moments of order 2n based on
the Stroud conical quadrature rule with q = n + 1 points, can be evaluated in
O(nd+1(e(2n+1)/n − 1)) operations. It is easy to verify that Algorithm 5 results

in wd+1 =
(

α+β

α

)

/
(

2n
n

)

and hence, thanks to (41), MassMat assembles the element
mass matrix from the moments. For ℓ = 1, . . . , d − 1, the loop over the pair of
indices αℓ, βℓ contains one multiplication or division and is executed a total of
(

n+ℓ
ℓ

)2
times, whilst the innermost loop, ℓ = d, requires three multiplications and

is executed
(

n+d
d

)2
times, resulting in an overall complexity of

d
∑

ℓ=1

(

n+ ℓ

ℓ

)2

+ 2

(

n+ d

d

)2

= O(n2d)

operations, as claimed. �

4.2. Stiffness Matrix. The element stiffness matrix ST for degree n polynomials
in R

d has dimension
(

n+d
d

)

×
(

n+d
d

)

, with entries given by

ST
αβ =

∫

T

gradBn
β(x) ·A(x) · gradBn

α(x) dx, α,β ∈ In
d (42)

where the gradient is taken with respect to the physical coordinate x ∈ T . The main
idea again is to exploit the property (6) of the Bernstein polynomials. Let eℓ ∈ I1

d

denote the multi-index whose ℓ-th entry is unity and whose remaining entries vanish.
We shall first use the following identity (easily obtained using elementary arguments
and the definition of the Bernstein polynomials)

gradBn
α(x) = n

d+1
∑

k=1

Bn−1
α−ek

(x) gradλk, α ∈ In
d (43)



18 MARK AINSWORTH, GAELLE ANDRIAMARO, AND OLEG DAVYDOV

Algorithm 8: ConvectMat(V , n, {µ2n−1
α (b),α ∈ I2n−1

d })

Input: Bernstein-Bézier moments {µ2n−1
α (b) : α ∈ I2n−1

d } computed with
q = n+ 1 quadrature points.

Output: Element convective matrix V .

Compute
> for k = 1 to d+ 1 do

> µ̃
(k)
α = µ2n−2

α (b) · gradλk, α ∈ I2n−1
d ;

Code as in Multinomial(V , n− 1, n) with the line
> Aαβ = wd+1;

replaced with the lines
> for k = 1 to d+ 1 do

> V α+ek,β += n ∗ wd+1 ∗ µ̃
(k)
α+β;

where we use the convention whereby any terms for which α − ek 6∈ In−1
d are

simply omitted from the summation. Inserting this identity into the expression for
the entries of the stiffness and making use of the property (6) gives an expression
for the entries of the stiffness matrix in terms of the matrix-valued Bernstein-Bézier
moments of the data A ∈ R

d×d:

ST
αβ = n2

d+1
∑

k,ℓ=1

(

α−ek+β−eℓ

α−ek

)

(

2n−2
n−1

) gradλk · µ2n−2
α−ek+β−eℓ

(A) · gradλℓ (44)

for α,β ∈ In
d , where we again adopt the convention whereby terms for which

α−ek+β−eℓ 6∈ I2n−2
d are ignored in the summation. Algorithm 7 takes advantage

of the expression (44) for the efficient assembly of the element stiffness matrix in a
similar fashion to the case of the mass matrix.

Theorem 4. The element stiffness matrix of degree n in R
d can be approximated

and assembled using the Stroud conical quadrature rule with q = n + 1 points in
O(n2d) operations using Algorithm StiffMat.

The proof is virtually identical to the case of the mass matrix. One point worth
noting however, is that the algorithm implements the convention (whereby terms
involving invalid indices are ignored) without requiring expensive conditional if
statements.

4.3. Convective Matrix. The element matrix V T corresponding to the convec-
tive term is given by

V T
αβ =

∫

T

Bn
β(x)b(x) · gradB

n
α(x) dx, α,β ∈ In

d . (45)

Arguing as in the case of the element stiffness matrix using identities (6) and (43)
leads to an alternative expression for these entries in terms of the vector-valued
Bernstein-Bézier moments of the data b ∈ R

d:

V T
αβ = n

d+1
∑

k=1

(

α−ek+β

α−ek

)

(

2n−1
n−1

) µ2n−1
α−ek+β(b) · gradλk α,β ∈ In

d , (46)

with the usual convention applying. Algorithm 8 exploits this expression for the
efficient assembly of the element convective matrix:
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Figure 2. CPU time required for assembly of stiffness and mass
matrices using Algorithms 6 and 7. The moments are obtained
directly from (13) in the case of constant data, and evaluated using
Algorithm 3 in the case of variable data. Results are shown for the
cases of dynamic computation and precomputed values of the basis
functions at the quadrature points.

Theorem 5. The element convective matrix of degree n in R
d can be approximated

and assembled using the Stroud conical quadrature rule with q = n + 1 points in
O(n2d) operations using Algorithm ConvectMat.

Figure 2 presents the timings obtained in the case where the number of quadra-
ture points q is taken to be n+1, where n denotes the polynomial degree. The CPU
time grows as O(n2d) as predicted by theorems 3 and 4. For comparison, results
are presented in the cases when the coefficients A and c are piecewise constant and
when they vary within the element. It is observed that there is some benefit in tak-
ing advantage of the closed form expression (13) in the case of piecewise constant
data although the difference diminishes as the order n increases in the cases where
d > 1, reflecting the fact that the computation of the moments is an O(nd+1) oper-
ation compared with the actual assembly which is an O(n2d) operation. Results are
presented for variable data for when the univariate Bernstein-Bézier functions are
evaluated on the fly (as in Algorithm 4) and for when the values at the quadrature
points are precomputed and stored on disc. It is observed that the difference in
CPU time is negligible. The actual implementation takes advantage of sequential
lay-out of the entries in the matrices in memory to avoid excessive costs due to
indirect memory access.
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4.4. Efficient Multiplication by Element Matrices. The algorithms presented
above show how the computation of the element matrices can be carried out (using
the Stroud conical quadrature rule) for polynomials of arbitrary degree n in any
number of dimensions d in the optimal complexity of O(n2d) operations. Never-
theless, in some applications, such as iterative solution methods, one may wish to
by-pass the assembly of the matrices in favour of directly computing the result of

multiplication of the BB-vector ~C corresponding to the current approximation u to
the true solution by one of the above matrices.

By choosing f(x;u; gradu) = c(x)u(x) in equation (35), we obtain

µn
α(u, f) =

∫

T

Bn
α(x)c(x)u(x) dx =

∑

β∈In

d

MαβCβ = (M ~C)α, α ∈ In
d ,

and it follows from Corollary 3 that multiplication by the mass matrix can be
carried out in O(qd+1(e(n+1)/q − 1)) operations, even in the case of variable data.
Likewise, choosing f(x;u; gradu) = A(x) gradu in equation (35) and making use
of identity (43) enables us to compute the result of multiplication by the stiffness
matrix in O(qd+1(e(n+1)/q − 1)) operations, again in the case of variable data. If,
as is usually the case, we select q = O(n), then these operation counts reduce to
O(nd+1) complexity obtained in [16] in the special case of piecewise constant data.

5. Tensor Product Bernstein-Bézier Finite Elements

Suppose that we have a finite element (A,ΣA, PA) where PA is the space spanned
by the basis functions {φA

α : α ∈ ΣA}, and that the valuation of the moments
{µα

A(·) : α ∈ ΣA} costs MA operations and involves NA function evaluations. Given
another such element (B,ΣB , PB), the tensor product element over the domain A×
B has degrees of freedom ΣA×ΣB over the space PA×PB spanned by {φA

α (x)φ
B
β (y) :

α ∈ ΣA, β ∈ ΣB).
How much does it cost to evaluate the moments

µα×β
A×B(f) =

∫

A×B

f(x, y)φA
α (x)φ

B
β (y) dx dy, (α, β) ∈ ΣA × ΣB

of a given function f : A × B → R, for the tensor product element? It is easy to
see that

µα×β
A×B(f) = µα

A(f
β
B), α ∈ ΣA, β ∈ ΣB

where fβ
B : A → R, β ∈ ΣB, is the function defined by the rule

fβ
B(x) =

∫

B

f(x, y)φB
β (y) dy = µβ

B(f(x, ·)).

The computation of the moments over the tensor product element requires NA

evaluations of the function fβ
B for each β ∈ ΣB, thereby contributing a cost of

NA × MB operations. Once these values are in hand, the cost of evaluating the
moments µα

A for each β ∈ ΣB is MA, meaning that the computation of the actual
moments given the data contributes a cost of MA × dim(ΣB). It is clear that the
number of function evaluations NB must exceed the dimension of the space PB , so
that dim(ΣB) ≤ NB. The following result now follows:

Theorem 6. Let (A,ΣA, PA), respectively (B,ΣB, PB), denote a finite element
whose moments may be computed in MA operations and NA function evaluations,
respectively MB and NB. Then, the moments for the tensor product element may
be evaluated in at most MA×NB+NA×MB operations involving NA×NB function
evaluations.
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We may use the above construction and result to construct other kinds of
Bernstein-Bézier finite elements and corresponding algorithms for the evaluation
of the moments.

5.1. Example 1: Prismatic Bernstein-Bézier Finite Element. Suppose that
we form a tensor product element from a d-dimensional and a 1-dimensional simplex
giving a so-called prismatic element in the case d ≥ 2. We suppose that each element
has the same polynomial degree n and each is based on the same q-point Stroud
rule, i.e. (A,ΣA, PA) = (Td,Σ

n
d ,P

n
d ) and (B,ΣB, PB) = (T1,Σ

n
1 ,P

n
1 ). Then, the

tensor product element uses Bernstein-Bézier basis functions. Moreover, thanks
to Corollary 2, we have NA = qd, MA = O(qd+1(e(n+1)/q − 1)) and NB = q,
MB = O(q2(e(n+1)/q − 1)). Theorem 6 then shows that the moments on the tensor
product element can be computed in at most O(qd+2(e(n+1)/q − 1)) operations by
composing the routine Moment with itself to first compute the moments over B,
and then again to compute the moments over A. Consequently, we can evaluate
the moments over the d + 1-dimensional tensor product element with the same
complexity as needed to evaluate the moments over a d+ 1-dimensional simplex.

5.2. Example 2: Quadrilateral Bernstein-Bézier Finite Element. Suppose
we take d = 1 in the previous example. Then the resulting element is a Bernstein-
Bézier quadrilateral finite element and the moments can be evaluated inO(q2(n+1))
operations involving q2 function evaluations since MA = MB = O(q(n+1)) in this
case (c.f. proof of Theorem 2).

5.3. Example 3: Hexahedral Bernstein-Bézier Finite Element. Suppose
we take the element A appearing in Theorem 6 to be the quadrilateral Bernstein-
Bézier finite element in the previous example and B to be the Bernstein-Bézier
finite element (T1,Σ

n
1 ,P

n
1 ). The resulting element is a Bernstein-Bézier hexahedral

finite element and the moments can be evaluated in O(q3(n + 1)) operations and
q3 function evaluations.

5.4. Example 4: Bernstein-Bézier Finite Element on [0, 1]d. More generally,
by repeatedly forming the tensor product of this element with (T1,Σ

n
1 ,P

n
1 ), we

obtain the d-dimensional tensor product Bernstein-Bézier finite element for which
the moments can be evaluated in O(qd(n+ 1)) operations.

The foregoing examples show how Bernstein-Bézier finite elements can be con-
structed on elements other than simplices and that the moments can be evaluated
in the same complexity as the corresponding simplicial element in the same number
of dimensions. The algorithms for the assembly of the stiffness, mass and convec-
tive matrices are readily extended to tensor product elements to give optimal order
assembly algorithms for such elements.
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