Bivariate Spline Interpolation with Optimal
Approximation Order*

O. Davydov! G. Niirnberger and F. Zeilfelder

Abstract

Let A be a triangulation of some polygonal domain Q C R? and let Sj(A)
denote the space of all bivariate polynomial splines of smoothness r and degree
q with respect to A. We develop the first Hermite type interpolation scheme
for Sg (A), g > 3r + 2, whose approximation error is bounded above by Khdt!,
where h is the maximal diameter of the triangles in A, and the constant K
only depends on the smallest angle of the triangulation and is independent of
near-degenerate edges and near-singular vertices. Moreover, the fundamental
functions of our scheme are minimally supported and form a locally linearly in-
dependent basis for a superspline subspace of S7(A). This shows that the opti-
mal approximation order can be achieved by using minimally supported splines.
Our method of proof is completely different from the quasi-interpolation tech-
niques for the study of the approximation power of bivariate splines developed
in [7, 18].
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1 Introduction

Let Q C R? be a polygonal domain, and let A denote a regular triangulation of .
The space of bivariate polynomial splines of degree ¢ and smoothness r with respect
to A is defined by

Sg(A):={s€C"() : 5,€1Ily forall TeA}, 0<r<yg,

where o
I, :=span{z'y’ : 1 >0, j>0,i+j<q}

is the space of bivariate polynomials of total degree q.

In the literature, point sets that admit unique Lagrange and Hermite interpolation
by spaces S;(A) of splines of degree ¢ and smoothness r were constructed for crosscut
partitions A, in particular for A' and AZ2-partitions [1, 6, 17, 22, 23, 24, 27, 28].
Results on the approximation order of these interpolation methods were given in
6, 12, 17, 21, 22, 25, 27, 28].

In the case of an abitrary triangulation A, standard finite-element techniques [9]
provide a tool to construct Hermite type interpolation schemes for S;(A) with optimal
approximation order O(h?t!), where h is the maximal diameter of the triangles in A.
However, as shown in [30], this method only works if ¢ > 4r + 1.

On the other hand, the approximation power of the spline space Sy (A) for ¢ >
3r + 2 was studied in [3, 7, 8, 18]. It was shown in [7] that for a sufficiently smooth
function f,

(1.1) dist (f, S[(A)) < Kh?t,

where K is a constant that depends only on f, r, ¢ and the smallest angle 5 in
A. In the earlier constructions in [3, 8] the constant K is bounded under additional
assumption that the triangulation has no near-singular vertices. Another proof of
(1.1) was recently suggested in [18]. If ¢ < 3r + 2, then the optimal approximation
order fails for certain triangulations (see [4]).

The problem of constructing a Hermite interpolation operator satisfying (1.1)
was already brought up in [8]. However, the question if the constant K for such an
operator could be bounded independently of near-singularities remained open.

It is the purpose of this paper to develop the first Hermite type interpolation
scheme for SZ(A), q > 3r+2, that possesses optimal approximation order in the sense
that the corresponding constant K in (1.1) is independent of near-degenerate edges
and near-singular vertices. The details of our construction are given in Section 2,
whereas the main result of the paper, Theorem 3.1 about the approximation order,



as well as its proof are presented in Section 3. Finally, Section 4 is devoted to an
analysis of the fundamental functions of our scheme that form a basis for a superspline
subspace of Sy (A).

We emphasize that our approach is completely different from that of [7] and [18].
In each of these papers a stable local basis for a superspline subspace of S7(A) was
constructed first by using Bernstein-Bézier techniques, and then the basis functions
were used to build up a quasi-interpolation operator that yielded the optimal ap-
proximation order. In contrast to this, we argue directly with nodal functionals and
develop a new approach that has its roots in the idea of “weak interpolation” in-
troduced in [21] and further developed in [25] and [12]. Furthermore, we need a
new description of C” smoothness across edges in terms of nodal functionals (see
Lemma 3.2). As a result, we manage to exploit linear dependencies between direc-
tional derivatives of smooth functions to suppress the instability of the minimally
supported fundamental functions in the neighborhood of a near-singular vertex, see
Lemma 3.3 and the discussion at the end of Section 4. Note that in [7, 18] much
more complicated basis functions with larger supports were constructed in order to
achieve stability.

Among other advantages of our approach is that the estimation of the approxi-
mation error (3.2) is completely local, i.e., it involves only the local Sobolev norm
of f on the triangle 7' on which the error is measured. Moreover, the result remains
valid for any nonconvex polygonal domain 2 with the constant K independent of the
Lipschitz constant of the boundary of (2.

As a by-product of our construction, we get a nodal basis for the space of super-
splines

S (A) == {s € S;(A) : s € C?(v) for all vertices v of A},

where p =1+ [%} and g > 3r + 2. The basis consists of the fundamental functions
$1,...,8, of our interpolation scheme. Some properties of this basis are studied in
Section 4. Namely, it is shown that {si,...,s,} is locally linearly independent and
thus least supported [5], i.e., the supports of the basis functions s; are as small as
possible, which is not the case for the basis functions constructed in [7, 18]. Moreover,
we show that {s1,...,s,} is stable if A does not contain near-degenerate edges.

We note that the support of each fundamental function s; has at most one vertex
of the triangulation in its interior, similar to the minimally supported basis functions
for bivariate splines of degree ¢ > 3r + 2 constructed in [8, 15, 16]. Particularly,
the supports of sq,...,s, coincide with the supports of the basis splines for S;"”“’(A)
given in [16]. However, there are important differences between our basis and the



bases in [8, 15, 16]. Since the Bernstein-Bézier minimal determining sets used in
[15, 16] cannot be directly transformed into a Hermite interpolation scheme, it does
not seem possible to employ those bases in a proof of optimal approximation order
in the presence of near-singularities. The main difference between our interpolation
operator and the one presented in [8] is that we do not avoid using normal derivatives
to the edges as nodal functionals. Therefore, we assign the nodal functionals to every
vertex, edge and triangle in a more symmetric fashion.

2 Nodal Functionals

Given a regular triangulation A, we denote by N the number of triangles, by V
the number of vertices, by V; and Vg the number of interior and boundary vertices
respectively, V7 + Vg =V, by E the number of edges, and by F; and Eg the number
of interior and boundary edges respectively, E; + Fg = E. It is well known that

EB = VB,
(2.1) E; = 3Vi+Vp -3,
N = 2Vi+Vg—2.

In [16] it was shown that

dimSpP(A) = (PPV+ () =3 L)) N
(22)

1
+ 5(7‘ +1)(2¢q—4p+r—2)E+ (2%2”“)0,

with o being the number of singular vertices of A, where a singular verter v is a
vertex which is formed by two lines which cross at v. It is easy to see that a vertex v
is singular if and only if at least three edges are degenerate at v, where the degeneracy
of an edge is defined as follows.

Definition 2.1 Suppose ey, es, e3 are three consecutive edges attached to a vertex v.
The edge e is said to be degenerate at v whenever the edges e; and e3 are collinear.
An edge e attached to v is said to be nondegenerate at v if it is either a boundary
edge or an interior edge which fails to be degenerate.

In the finite element method piecewise polynomial trial functions are usually de-
termined by their values and derivatives at some points, so-called nodal values (see,



e.g., [29, p. 101]). In [19, 11] and [26] this technique was applied to the study of
spline spaces S;(A), q > 5, and supersplines S;?(A) with p > 2r and ¢ > 2p + 1,
respectively.

We set
CHA)={feC(Q) : fj,€CT) forallT € A}, p=0,1,...,

and denote by D, the derivative operator in the direction of a unit vector 7 = (7, 7)
in the plane, so that

0 0
D:f:=1D.f +7,Dyf, D.f:= %: Dyf:= a_i

Definition 2.2 Given f € C**%(A), o, 8 > 0, any number
(23) vf = DEDL(,)(2),

where T € A, z € T, and 7,75 are some unit vectors in the plane, is said to be a
nodal value of f, and the linear functional v : C**#(A) — R defined by (2.3) is a
nodal functional, with d(v) := « + (3 being the degree of v.

For some special choices of z, 7, 79 it is convenient to use the following simplified
notation which goes back to [19]. 1) If v is a vertex of A and e is an edge attached
to v, we set

D2 f(v) = DX(fi,)(v), a>1,
where 7 is the unit vector in the direction of e away from v, and T" € A is one of the

triangles with edge e. The notation is correct since in the case when there are two
different triangles 7', 75 attached to e, f|T and f|T coincide along e, and hence
1 2

D2(fi ) () = D2, ) ().
2) If v is a vertex of A and ey, e5 are two consecutive edges attached to v, we set
Dg, D, f(v) = Dy, D7 (fy,)(v), a,B>1,

where T' € A is the triangle with vertex v and egdes ey, e, and 7; is the unit vector
in the e; direction away from v. 3) For every edge e of the triangulation A we choose
a unit vector 7+ (one of two possible) orthogonal to e and set

D¢ f(z):=D2 f(z), z€e, a>1,
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provided f € C%(z).
We now associate with the superspline space S;*(A), with ¢ > 3r + 2 and

(2.4) p=T+[T;1},

a set N of nodal functionals, as follows.
For every vertex v of A, let T}, ..., T, ®) be all triangles attached to v and num-
bered counterclockwise (starting from a boundary triangle if v is a boundary vertex).

Denote by e; the common edge of T¢"! and T¢, i = 2,...,n(v). If v is an interior

n(v)

vertex, €, = ey(y)4+1 denote the common edge of Tv1 and 7T, "’. Otherwise, e; and

en(v)+1 are the boundary edges (attached to v) of 7)) and T’ ©) respectively.
We define N (v) to be the set of nodal functionals assigning to every function
feCr(v)nC*(A) the following nodal values:

(v1) DgDSf(v) for all (o, 5) € Ay, where
A ={(a,p)€Z’: «>0, >0, a+5<p},

(v2) D2D?  f(v) for all (o, ) € Az, where

€i41
Ay ={(a, ) €L* : a<r, <7, a+f2>p+1},
and for each 7 € {1,...,n(v)} such that e; is nondegenerate at v,

(v3) Da2D?  f(v) for all (o, B) € Az, where

€i41
Ay ={(a,8)€Z?: a>r+1, 2a+8<3r+1, a+p>p+1},
and for each i € {1,...,n(v)} such that e; is degenerate at v,

(v4) D2 D? f(v) and D2 (leDgn(v)f(v) for all («, 3) € A; if v is a boundary vertex,
and

(v5) D2 D? f(v) for all (o, ) € A, if v is a singular vertex.



Fig. 2.1. The sets A;, As and Aj.
On every edge e of A, with vertices v; and vy, we take points
(2.5) ot ::vl-{—#;rl(vg—vl), i=1,...,6,, p=0,...,7,

where
(26)  kyi=g-3r—1—-(r—pmod2=g—2r —1—p—2["],

and define N (e) to be the set of nodal functionals assigning to every function f €
C"(2) the following nodal values:

(e) DY f(ztt),..., DY f(ze™) forall p=0,...,7.

In every triangle 7" € A, with vertices vy, vo and v3, we take uniformly spaced
points N
(2.7) 22K = (ivy + jus + kus)/q, i+ j+k=q,

and define N (T') to be the set of nodal functionals assigning to every function f €
C(€) the following nodal values:

t) f(z27*) for all 4, j, k such that i + j + k = g and r < 4,5,k < g — 2r.
T

We set
N =N U N u|N(T).



Lemma 2.3 We have
(2.8) card N = dim SS’P(A) )

Proof. It is easy to see that

card A4 = (pf) , card Ay = card A3 = (QT*PH)’

2

cardN'(e) = (r+1)(¢—3r—1) = [Z2] , cardN(T) = ("3 7).

2

(2.9)

Therefore,

card N = ("P)V+(("5) +3(7 ) N+ 2(7 Ve

+ (r+1)(¢g—3r—1)+r—p E+ (21‘—2p+1)0_ )

The lemma now follows from (2.1), (2.2) and a simple computation. W

3 Hermite Type Interpolation

Theorem 3.1 Letr > 1,g>3r+2and p=r1r+ [%] Given f € C*(Q), there
exists a unique spline sy € SyP(A) satisfying the following Hermite type interpolation
conditions

(3.1) vsy=vf foral veN,

where N is defined above. Moreover, if f € C™(Q) (m € {2r,...,q+1}) and T € A,
then

(3:2) IDEDF(F = 5) |ty < K b7~ max | DYDY flloq

for all a, 8 > 0, a+ B < m, where hr is the diameter of T', and K s a constant
which depends only on r,q and the smallest angle O in A.

We will prove Theorem 3.1 at the end of this section, after establishing several lemmas.
In the first two lemmas we consider a simple triangulation consisting of two tri-
angles and establish some relations between nodal values of two polynomials defined
on each triangle and joined together with C" smoothness across a common edge of
the triangles.
Let T1 and T, be two triangles sharing a common edge e = [v1,v5], and let e; # e
be the other edge of 7; with endpoint v, + = 1,2. Denote by 7, 7y, 7o the unit
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vectors applied at v; in the direction of edges e, e;, es respectively, and by 6; the
angle between 7 and 7;, 1 = 1,2. (See Fig. 3.1.)

\ g

Fig. 3.1.

Furthermore, let s be a piecewise polynomial function on 77 U 75 such that
S|q, = Pi ell,, i=1,2.

QOur first lemma characterizes C" smoothness of s across e in terms of its nodal values.
(See Lemma 2 in [8] for a similar characterization using barycentric coordinates.)

Lemma 3.2 Letr <gq.
1) If 6, + 05 # m, then s € C™(T1, U Ty) if and only if

(3.3) sin®0y Dy, DY *pa(v1) = Y _(=1)7(§) sin® " (61 + 65) sin”6, DI DI Ppy (vy),
B=0

foralla=0,...;7r and y=«,...,q.
2) If 01 + 0y = 7, then s € C"(Ty UTy) if and only if

(3.4) D2 DI~ *pa(v1) = (=1)*Dg DY ~p1(v1), a=0,...,7, Yy=qa,...,q.

Proof. Evidently, s € C"(7} U T3) if and only if for some unit vector 7' noncollinear
with 7,

DEDSps(z) = DEDSpi(z), forall a,u >0, a4+ pu <r,and all z € e.
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Since (Df.“,pi)|e, i = 1,2, is a univariate polynomial of degree at most ¢ — «, this is
equivalent to the condition

DI *D&ps(v1) = DY~ D%p1(v1), a=0,....71, Yy=aqa,...,q.

We now choose 7/ = 75. If 1 + 6y = 7, then 71 = —7», and we immediately get (3.4).
Otherwise, if 0; + 0 # 7, then the vectors 7, 7 and 7, stay in the relation

T sin(01 + 02) =T sin 92 —+ 7 sin 91 y

which implies

sin*0, D3, D] “py(vy) = Z(—l)ﬂ (g) sin® # (6, + 6,) sin®@, D? DY Pp, (v1),
=0

and the first statement of the lemma follows. W

Thus, the nodal values of s € C"(T; U Ty) stay in relations (3.3). The same
relations hold for every sufficiently smooth function f. By solving a linear system we
can estimate some of the nodal values of f — s at v; involved in (3.3) in terms of the
others.

Lemma 3.3 Suppose that s, as defined above, is in C"(TyUT5), and let f € C*(Ty U
Ty) for some k € {p+1,...,2r}. If 6, + 0y # =, then for every 3 = 2k — 3r —
1,...,k—r—1,

B8 nk—p _ a nk—a _
DEDEA =] < K maxID3DE(S = p)(on)

(3.5)
& Jsin 0+ 0] max [DDE (7~ p)(wn)] ),

i=1,2
where K depends only on r and 6,.

Proof. Since f € C*(v;), we have

sin®0, D& D f(vy) = Z(—l)ﬂ (g) sin®# (0, + 05) sin’@y DP DE=5 f(v,)
=0

10



for all @« = 0,..., k. This, together with (3.3), imply that

[e%

(3.6) 20 =Y (1)’ (§ars, a=2k-3r—1,...r,
B=0

where

a1, := sin # (01 + 65) sin®0, DZ DEA(f — p1)(v1),
ag 3 = sin_ﬁ(ﬁl + 02) sinﬂﬁl DEQDi_ﬂ(f — pg)(vl) .

Consider (3.6) as a system
Az =b

of 4r — 2k + 2 linear equations in 4r — 2k + 2 unknowns
aig, B=2k—-3r—1,...;k—r—1, 1=1,2.
Thus, we have
T = (al,Qk—sr—1, cees Q1 k—r—1, A22k—3r—1; - - - a2,k—r—1)tu
b is a (4r — 2k + 2)-vector whose components are some linear combinations of

ag, B=0,...,2k—3r—2, and
aig, B=k—-r...,r, i=1,2,

B -I
=(e o)

C: ((—1)7"4‘](”17,;:—]))"” : with n::k‘—fr‘_l, m = 2T—k+1,

,5=1

and

where

I is an m X m identity matrix, O is an m X m zero matrix, and B is a certain m x m
matrix. Since the determinant of C is a nonzero constant multiple of

1 m
det (m>i,j:1 # 0,

11



A is nonsingular. Therefore,
IZlloo < 14" HloolIbl oo,

where ||A ||, is bounded by a constant dependent only on r. Particularly, for all
B=2%—3r—1, .. k—r—1,

<
|ar,8] < Ki (09;2,?"3,2 |a1,a

+ max |ai.|+ max |ag,
k—r<a<r k—r<a<r

where K; depends only on 7.
Recalling the definition of a; 3, 7 = 1, 2, we obtain

|D8 DEB(f — p1)(01)] = |a1,g5in® (61 + 6) sin 76, |
s B—a :a—p o NEk—a _
=k <0<ag211?X3r2 ‘ St (01 + 92) S QQHDH DT (f pl)(vl)‘

+ max_[sin® (6, + 6o) sin® 65| D D (f — p1)(va)

k—r<a<r 2

+ max |sin®"*(f; + 6,) sin®, sin =P8, || DX DF(f — po) (v1)|> )

and (3.5) follows. W

We also need the following univariate “weak interpolation” lemma (compare [21,
Remark 5ii] and [12, Lemma 4]).

Lemma 3.4 Let e C R? be an interval with endpoints vy, ve, and let p € {0,...,r}
and m € {r + [m%} oo+ 1—p}. Then for any f € C™(e), any p € I, and
every vy =10,...,m,

ID3(f = Plloe < Kb (hmllDfr”fllae) + max |(f —p)(z)
(3.7) =t
£ max KDSE - p)0)])

0§a§r+[%ﬁ]
i=1,2

where h is the length of e, T denotes the unit vector in the direction of e, z** and k,
are defined in (2.5) and (2.6), respectively, and K is a constant which depends only
on q.
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Proof. It is sufficient to consider the case e = [0,h], i.e., vi = (0,0), va = (0,h).
Then 7 = (1,0), D, = D,, 2/ = (#’il,o), i=1,..., K
Since f € C™[0, h], we have

(38) ||D:Z(f_ﬁ)||0[0,h] < %”chnfnc[mh]a 7:0’>m’

where p is the (univariate) Taylor polynomial,

m—1
ZOED PR

v=0

Therefore,

I DI(f = P)|lcro.n IDZ(f = D)llcon + 1D (B — p)llcron

<
< R"DZ fllcron + 1P7 B — p)llcion,

and we only need to estimate ||D)(p — p)||cjo,n-
Let
Ay =1+ [THT_”] .

Since K, + 2(\, + 1) = ¢ — p + 1, the following Hermite interpolation problem
g =a;, i=1,...,k, D%(vj)=aj0, a=0,...,0, j=1,2,

has a unique solution g among univariate polynomials of degree at most ¢ — u, for

any given data a;, 1 = 1,..., Ky, and aj, « =0,...,A,, 7 =1,2. Then
Ku )\p,
(B—p)() =Y (6P Lin(®) + D D Dg(5— p)(v;)Lian(t), t€[0,h],
i=1 §=1,2 a=0
where L;p,i=1,...,k,,and Ljqap, « =0,...,A,, 7 = 1,2, denote the fundamental

polynomials of the above interpolation problem, i.e., they are univariate polynomials
of degree at most ¢ — i, uniquely determined by the conditions

Jjh \ — s
Li=h(nu+1) — 5i,ja 1,] = 1a <oy Ry,

D2L;p(0) = D2L;p(h) =0, a=0,...,\,, i=1,...,K,,
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and

Lian(Z) =0, j=1,... ks, @a=0,...,),, i=12,

K+l
DZLlaaih(O) = D;LQ,a,h(h) = 504,115 O{, V= 05 <. a)\u;
D;Ll,a,h(h) = DZLQ,a,h(O) =0, av=0,..., )\ua

respectively. By a uniqueness argument, it is easy to check that

DYLin(t) = h"D]Lii(3), te€[0,h],
D)Ljan(t) = h* "D)Ljau(3), t€[0,h]

and, consequently,

D7 Linllcony = A DY Lixllcoa,

D7 Ljanllcon = h*77IDyLjeallclo-
Therefore, we have
Ky
D75 = p)llcwn < D16 —p) (B | Liillewo
=1 N
+ > Y DB = p) W) TN L llero,n,
j=1,2 a=0

Sincep—p=(p— f)+ (f —p), (3.8) implies

(6 — p)(247)] W™D fllcon + 1(f — p)(22)],
1Dz (P — p)(v;)] W™D fllcon + D2 (f — p)(v)];

and the lemma follows because || Li,1||¢[o,1) and || Lj,a,1]/c[0,1] are bounded by a constant
dependent only on ¢. B

<
<

Since our interpolation scheme is based on nodal values involving partial deriva-
tives in various directions, we need a tool to recast the (weak) interpolation conditions
in such a form that their interaction becomes tractable. As a “common unit” we will
use derivatives of the type D} D" (f —s). The next two lemmas provide estimations
of these derivatives in terms of nodal values of our scheme.
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Consider first a single triangle 77 € A, and let e be one of its edges, with vertices
vy and v,. (Note that e may be a boundary edge of A.) Denote by e, and e two
other edges of T, attached to v; and vq, respectively, and by 6, ; the angle between
e and e, i = 1,2. (See Fig. 3.2.)

Fig. 3.2.

Lemma 3.5 Let s € SpP(A) and f € C™(82) (m € {2r,...,q+ 1}) be given. Then
forallpy=0,....r and y=0,...,m — u,

ID2DA(S = e < Kn 7 (7 max D24 DE flecs
0<p' <p

v (f_ wi
59 + e DI = 5)(:E)

0<i<
_7/_’9#/

at+B | pnansb B .
+ (015)6111411%)§2UA3 h ‘De Del,i (f S) (UZ)| ) 9
B<p, i=1,2

where h is the length of e, the sets A1—As are defined above, and K depends only on
q and min{6, 1,6, 2}.

Proof. Since
(a,M)EA1UA2UA3<:>OSaSr+[MT_H:| , u=0,...,7

Lemma 3.4 shows that there exists a constant K; dependent only on ¢, such that

IDI(f ~ Mow < Kb (hmI|D£”f||c(e)+Ogl.gX (f = 8)(224)
<i<ky

a| PHo . ' _
+ (a,o)erg%§2UA3 h |De (f 5) (’Uz)| ) s Y 0, ee.,m,
i=1,2
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which proves (3.9) for 4 = 0. Proceeding by induction on u, we suppose that (3.9)
holds for 0, ..., u—1. Again by Lemma 3.4, applied to D¥, f € C™ *(e) and p = D¥, s,
we get for ally =0,...,m — p,

IDIDE(f — )l < Kah " (hmﬂanWDgLfnc(e) + max (DL (f = )()
<i<kp

al na s _ )
+ (a,u)erillau),§2uA3 h ‘De 'DeL (f S)(UZ)| ) .
i 2

=1,

Thus, we need to estimate DD (f — s)(v;) in terms of Df}Dfl,i(f — 5)(v;) with
B < p. To this end, we use the relation

T1; = £7cosb; £ 7+ sin bhi, 1=1,2,

where 71 ;, 7 and 7F are the unit vectors in the directions of ey ;, € and e* respectively,
so that

p ) o
(3.10) DgDL (f —s)(vi) = D2 :t(;lj’) cosh 6, ;sin# @) ; DI D¥ (f — s)(vs),

u'=0
and hence,

DEDA(f = s) (W)l < |DED(f = 8)(v)

+ K, max

0<p' <p—1 DD (f —s)(v)|, =12,

where K, depends only on p and min{6,;,6,2}. Furthermore, by the induction
hypothesis,

DI DY (f = 5)(v3)

< Kh o (hm ,Jax 1D # DY, flloe)

n " " ;
+  max AIDE(f — ) (2))]
0259?;,

o +8| na NS - .
+ o max WD D] (f s)(vm),
B!, i=1,2

and (3.9) follows. W
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Under the notations of Lemma 3.5, suppose that e is an interior edge of A and
denote by 75 the triangle in A that share e with 7;. Let es; and ez 2 be two other
edges of Ty, attached to v; and v,, respectively, and let 6,; be the angle between e
and eg;, 1 = 1,2. (See Fig. 3.3.)

Fig. 3.3.

Furthermore, let A denote the length of e.

Lemma 3.6 Let s € SpP(A) and f € C™(Q) (m € {2r,...,q+ 1}) be given.
1) If 619+ 025 # , then for all p=0,...,r and y=0,...,m — p,

IDID(f — )llew < Kh 7" ( B max | DR DF. fllog

0<p <p

u u N i a+p a s B
+ 02%‘ R IDE (f —s)(28")] + (a,ﬁ)erill%}fxzms h*™P| D¢ Del,l(f s)(vy)]
(3.11) OISty B<n
hetB|DeDP (f —
T X 5, 11D Des (= 8)(02)]

+ |sin (612 + 022)|  max ha+6|D§Dfm(f — 8)(v9)| ) ,

(anﬁ)eAQ’ i:152
where K depends only on q and min{6; 1,6 2,65-}.

2) If both 611 + 051 # m and 015 + 020 # 7, then for all p = 0,...,7 and
fy:Oa"':m_/“h
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TOE (F — < Kh~7 k[ pm m—u'
ID2DA(F = st < K0+ (07 s 102 D Sl

(312) T max BDL(f - s) )]+ max  hHDIDE(f  5)(v;)]
0k, j=1,2

s —T . . a+p DaDﬁ _ .
+ max|sin™ (61, + 02)]  max  ATEIDED (f s)(vj)|>,

where K depends only on q and min{6, 1,6, 2,021,622}

Proof. 1) The essential difference between (3.11) and the already established in-
equality (3.9) is that the terms

ha+ﬂ|DgD6 (f—S)(’Ug)|, (a’ﬂ)EAi% ﬂSM,

e1,2

in the right hand side of (3.9) are substituted by
|sin~" (012 + 22)| K |DEDL (f — 5)(v2)], (o, B) € Ay, i=1,2.

If w =0, then {(a, 3) € A3 : < pu} =0, and (3.11) is a straightforward consequence
of (3.9). Moreover, in order to perform induction on u, we only need an estimation
of the form

max h*™|D*DF (f—s)(v2)|§K1< max h7+ﬂ’||Dngi(f—s)||C(e)

e
(a,8)€Ag 1,2 o< <p—1

(3.13) o= 0<y <m—p!

in "(015 + 0 hetA| DD (f — :
+ [sin™" (612 + 23)'@,@21??2:1,2 |Dg Dy, (f — 5)(v2)]|

To this end we employ Lemma 3.3, which gives for all («, ) € Az, with 8 < g,

DDA, (1 = )| < Ko (|, x| D DE(7 = 5)(w)
Sl (O Oua)| | mxIDESDE(7 = 5)()] )

Since
B <2atp)-3r—2=pF <pu-1,

18



we obtain, by making use of (3.10),

a+B-8' np _ < at+B—p' ' B
yomas DEP D (f = o)) < | max | [DEH DL~ 5)()
< Ky max [DEPDL(f = s)(v2)] < Ky | max [IDZHDE(f = 5)llego-

Furthermore, since
at+f-r<f<r=(a+f-F,0)€ A,
we have

+6-8' B ' Df
g ax DD, (f—s)(w)l < max DD, (f — 5)(v2),
o’ +8'=a+3, i=1,2
and (3.13) follows.
2) This part can be established by exactly the same arguments, the only difference
being that the terms

ha+ﬂ|DgDeﬂl,1(f_s)(U1)|’ (aaﬂ) € A3a ﬂg 22
now also have to be estimated. H

Let T € A and let v be a vertex of T. Then T = T} for some i € {1,...,n(v)},
where T}, ..., T, ®) are all triangles attached to v and numbered counterclockwise,
as in the definition of A (v) (see Section 2). We are going to define various subsets
of N(v) and N that will be instrumental in the proof of Theorem 3.1 and the key
Lemma 3.8.

We define Nr(v) € N (v) to be the set of nodal functionals corresponding to the
following nodal values:

(vtl) DgDE f(v) for all (o, B) € Ay,

(vt2) D2D?  f(v) for all (o, B) € Ay if e; is nondegenerate at v, or

€i41
Dgi_ngif(v) for all (o, B) € As ife; is degenerate at v, but e; 1 is nondegenerate
at v, or

D2 D5 f(v) for all (o, ) € Ay if both e; and e; ; are degenerate at v, but

€;—27 €—1
e;_9 is nondegenerate at v, or

D2 Df f(v) for all (o, B) € Ay if v is a singular vertex,
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vt3) D D# f(v) for all (o, ) € A, if e;41 is a nondegenerate at v interior edge,
€i+2

€i+1
or

D¢ D f(v) for all (o, B) € A3 if e;4, is degenerate at v, or

€i+1 €i+2

D¢ D f(v) for all (a, B) € As if ;41 is a boundary edge, and

€i+1

(vtd) D2DE  f(v) for all (o, B) € Ay if either e; is degenerate at v or e; is a boundary

€i+1
edge, or

Dg_ D? f(v) for all (a, ) € As if both ¢; and e;_; are nondegenerate at v, or
D2 _ DS f(v) for all (o, B) € Ay if e; is nondegenerate at v, €;_; is degenerate

€2
at v, and e;_» is again nondegenerate at v, or

D¢ _Df | f(v)for all (a, B) € Ay if e; is nondegenerate at v, both €;_1 and ¢;_s

€i—3
are degenerate at v, and e;_3 is nondegenerate at v.

Furthermore, denote by
NT,j(U) CNT(U)a j:1:253,4,

the set of functionals corresponding to the nodal values listed in (vtl), (vt2), (vt3)
and (vt4) respectively.
We also define

NT(U) C NT(U)

as follows: if each of two edges e; and e;; is either degenerate or lies on the boundary,
then Nr(v) := (), if e;;1 is an interior nondegenerate at v edge, but e; is not, then
N (v) := Nia(v) UNgs(v), if, conversely, e; is an interior nondegenerate at v edge,
but e;;; is not, then A7T(v) := Npo(v) UNp4(v), and, finally, if both e; and e;;; are
interior nondegenerate at v edges, then Ny (v) := N o(v) U Nys(v) U N7 4(v).

For every triangle T € A with vertices vy, vo, v3 and edges ey, e, €3, let

Np = UNT(Uz‘) U UN(ei) UN(T),

3
NT = UAV/T(UZ)
i=1
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Finally, we need a set of nodal functionals N of finite-element type. Let T € A,
let v be a vertex of 7', and let the edges e, e2 of T be attached to v. Then Nj(v) is
defined to be the set of nodal functionals corresponding to the nodal values

D2 D? f(v), for all (o, f) € Ay U Ay U A3 U As,
where
As:={(0, 8) € 2% : (B,0) € As}.

Furthermore, for every edge e of T' we define N7.(e) to be the set of nodal functionals
assigning to every function f € C"(Q2) the following nodal values:

DV f(zY), ..., DY f(ze™) forall p=0,...,r,

where 2/ and k,, are defined in (2.5) and (2.6) respectively, and 7' is the unit vector
in the direction from the middle point of e to the vertex of T opposite to e.
For every triangle T € A with vertices vy, v2, v3 and edges e, 2, €3, we set

3 3
Np = UN;(Ui)UUN’;(ei)UN(T)'
i=1 i=1
Lemma 3.7 We have

(3.14) card N = card N = (*1?)..

Moreover, Ny is Il -unisolvent, i.e., for any real data a,, v € Ny, there ezists a
unique polynomial p € I, such that vp = a, for all v € N7.

Proof. Obviously,
card N7 = 3card A; + 3card A, + 6 card A3 + 3card NV (e) + card N'(T)).

By (2.9) and some elementary computation, we obtain card N7 = (q;’2). Furthermore,
4
card N7 (v) = Z card N7,;(v) = card A; + 3 card Ay = card N7 (v).
j=1

Hence, card Ny = card Ny, which proves (3.14). Particularly, card N = dimII,.
Because of this, the second statement of the lemma will follow if we show that the
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only polynomial satisfying vp = 0 for all v € N7 is the zero function. Following the
lines of the proof of Lemma 3.5, with f = 0 and s = p, we get

||DZiDg_lp||C(€i) :0: 1= 1a2a3:
forall u=0,...,rand vy=0,...,q — u, and every edge e; of T. Therefore,

p= (lllzls)THﬁ;

where [, lo and I3 are linear polynomials such that e; C {(z,y) : l;(z,y) = 0},
and p is a polynomial in II,_3,_3. Then vp = 0, for all v € N(T). Since N(T) is
I1,_3,_3-unisolvent, we have p = 0, and hence, p = 0. B

We also need some local geometric characteristics of the triangulation.

Let e be any interior edge of the triangulation A, and let v and v’ be its vertices.
Denote by e; and ey the adjacent edges of e at v, and by 6; the angle between e and
e, 1 =1,2. We set

06,1, = min{&l, 92}, ge,v = |7T — 91 — 92| .

If e is a boundary edge, then 6., denotes the angle between e and its unique adjacent
edge at v. Furthermore,

0 :== min{f, ., 0.},

and for an interior edge e,

i - O if e is degenerate at v’,
. min{f,,, 0, }, if eis nondegenerate at both v and v'.

(We note that no edge can be degenerate at both endpoints simultaneously.)
For every triangle T" € A we denote by

9T and éT

the minimum of 0, over all edges of T', and the minimum of 0, over all edges of T
lying in the interior of €2, respectively. Thus, 67 denotes the smallest angle around
T, whereas 67 measures the “near-degeneracy” of the edges of T'. Certainly,

O > Oa.

The following key lemma shows that the nodal functionals in N7 can be estimated
in terms of those in Nr. Moreover, only the contribution of N to this estimation is
influenced by 6.
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Lemma 3.8 Let T' € A, s € SpP(A) and f € C™(2) (m € {2r,...,q+1}). Then

for any v* € N7,

(£ = 9l < K1y ™ (i ma IDE Dy Flcn

(3.15)

+ max K u(f = s)| + sin 07 max K23 v (f — )| ) :
vENT\NT vENT

where hr is the diameter of T, and K depends only on r, q and Or.

Proof. Since N (T) C N7NNr, we do not need to estimate |v*(f —s)| for v* € N(T).
Moreover, by simmetry, it is enough to consider N7.(v) for a vertex v of T, and N7 (e)
for an edge e of T

Let T = T! for some 7 € {1,...,n(v)}. Then N7(v) corresponds to the nodal
values

v'g=D2DE g(v), forall (o, f) € A1 U Ay U A3 U A;.

€i4+1
We consider three cases.
Case 1: (o, f3) € A;.
Then
Oé-f—ﬁ (67 ,3 _ < a+/@ a+ﬁ o ﬂl _
WIDEDL,, (f = 5)w) S 2N wax DYDY (f - )(0)
< 2° max ha+ﬁ DO‘Dﬂ' —3)(v)].
<2 max K DEDY(f - 9)(0)]
Therefore.
(316)  hFTIDEDE (f—s)(0)| <2 max h{7w(f-s)], (f) € Ay,
I/ENTl(’U)

which proves (3.15).

Case 2: (o, f3) € As.
If e; is nondegenerate at v, then v* € Nro(v) and (3.15) trivially holds. If e; is
degenerate at v, but e; ; is nondegenerate at v, then, by (3.4),

hy?|Dg DL, (f = s)(v)| = kg |DEDS_, (f = $)(v)] < max )h( v (f =5l

e e
i+1 i—1 I/ENTQ(
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Similarly, if both e; and e;_; are degenerate at v, but e;_, is nondegenerate at v, then
a repeated application of (3.4) shows that

a a «a a d(v
WP IDEDE L (f = ) = kg IDE DL (f = 5)(0) < max BT w(f = 5)].

Finally, if v is singular, then in the same manner we can see that

(317)  WIDLDL,(F = )0) < max KOR(E=9. (@8 €A,

€7 €i+1
which, hence, holds in either case and confirms (3.15).

Case 3: (a,f3) € A3 U As.

By simmetry, assume without loss of generality that (a, 3) € As.

If either e; is degenerate at v or e; is a boundary edge, then v* € Nr4(v) and
(3.15) trivially holds. If, otherwise, e; is a nondegenerate at v interior edge, then
analysis similar to that in Case 2 shows that
(3.18)  RPIDEDS (f—s)(v) <  nax RENu(f—s),  (a,B) € As.

€5 €i—1 NT,4 (’U)

Let us denote by v; 1, v; and v;;1 the vertices of e; 1, e; and e;,; different from v,
respectively, by ej,; the edge between v; and v;;,, and by ej_, the edge between v;
and v;_;. The same argumentation as in the above shows that

WP \DeD; (f=s)(w)| <2 max hp”u(f =s), (a,f) € A,
(3.19) . v )

WIDeD; (f—s)w)l < max REu(f = s), (a,f) € 4o

veNT 2(v;)
If now e; is nondegenerate at v;, then by the definition of N7,

(3.20) Nra(v) = {vg = DDl g(v) : (o, f) € As}.

In view of (3.16)—(3.20) and Lemma 3.6, 2), with 7, = T and T, = T/~', we have
forevery p=0,...,rand y=0,...,m — pu,

he M| DLDL(f = 5)llecen < Ko ( hit max | D5 Dy flloge

+ max Ru(f—g)| + max B, 0F _ g

(3.21) veNp(er) T w(f —s)| VN1 oioNa o) T lw(f —s)

+sin "6 max RO o > |
T”ENT,Z(U)UNTA(v)uNm(W)UNT,a(W) T v(f )l
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where K7 depends only on ¢ and 6. Since

(3:22) |V*(f = s)| = [DEDE,,,(f = 5)(v)| <27 max [DZF7DY (f — 5)(v)],
0<u<p €

(3.15) follows from (3.21).
If e; is degenerate at v;, then

(3.23) Nrg(vi) = {vg = D¢DL g(v) : (o, ) € As}.
By (3.4),
(3.24) IDeD; 9| =|DeD; g(w)l, (o) € As.

In view of (3.16)—(3.19), (3.23), (3.24) and Lemma 3.6, 1), with 7} = T and T, =
T, we have for every u=0,...,7 and y=0,...,m — p,

B NDLDA S = 9letey < Ko ( 1 108D Sl
g <w<p i

+ max AM(f —s)| + max R \(F — s
(325) IJENT(ei) T ‘ (f )| UENT,l(’U)UNT,l(Ui) T ‘ (f )|
+ max h‘%(”)|1/(f —5)| + sin""fyp max h‘%('j)h/(f —9)| ) ,
VENT, 2 (v )JUNT 3(v;) vENT 2(v)UNT 4(v)

with Ky being dependent only on ¢ and 67. Therefore, (3.15) follows from (3.22).
Finally, let e be one of the edges of T, say e = e;. Then for any v* € N7,

(3.26) |]/*(f . 8)| — |Dfr‘,(f _ 8)(Zé’j)| < oH Oinai( \Dg._“'D“i(f . S)(Zg,’j)| ’
<p'<p ¢ € g

and (3.15) follows from (3.21) or (3.25) if e; is an interior edge of . If, otherwise, e;
is a boundary edge, then, similar to the above, Lemma 3.5 implies that

h%‘{'“ ||D31DZ£_ (f — S)HC(ei) < Kj ( h? 0 max ”DZ;_MHDé_f”C'(ei)

<p” <yt
+ max R(f —s)| + max Ry (f — s
oy b OG- ma ()
d(v)
max h"\v(f —s ,
VENT 2(V)UNT 4(v)UNT 2 (v; )UNT 3(v;) T | (f )|)
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with K3 being dependent only on ¢ and 67, which, in view of (3.26), implies (3.15).
|

In the following lemma we use standard finite-element techniques to get an esti-
mation of ||s|,[|c(r) in terms of the nodal functionals v € N7.

Lemma 3.9 If s € SpP(A) and T € A, then

< K max h%")
(3.28) I8 lloer) < max hr vs|,

where hr is the diameter of T, and K depends only on q.

Proof. Let T be a fixed triangle in the plane, say, the triangle with vertices 9; =
(—=1,0), 9 = (,0), 53 = (0,*2). Although 7’ may be not in A, it is easy to see that
the set of nodal functionals N} is well-defined for 7.

For every T € A, let By : R2 — R2 be an affine mapping such that By (T) = T,
Then
Brz=Arz+bp, z€R?,

where Ar : R2 — R? is an invertible linear mapping and by € R2. Since 7' contains

a disk of radius ?,

(3.29) |Az|| < 2v3hr.

For every 0 € N7, say of the form
pg = D& DY g(%),

let us define v by
vg == D%szg(zo) ,

where
7 = ||Arfi|| YAr7i, i=1,2, 2z = Bri.

Then it is easy to check that

(3.30) PeENF = veEN;.
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Moreover, a standard computation shows that

(3:31) D, D2,g(Bré) = | Ar#i ||| Az )| D DS g(=0)

T1

By Lemma 3.7, N is II,-unisolvent. Therefore, for every v € N there exists a
unique fundamental polynomial p, € II; such that

o 1, ifv* =v,
Pr=20, ifv e Np\{v}.
Similarly, for every © € N7 there exists a unique fundamental polynomial p; € II,

such that
. J L, ifvr =7,
YPr= 0, if v e N\ {9}

It follows from (3.31) that
(3.32) po(Brz) = || Arh||*[| Azl "ps (2)

We are now ready to prove (3.28). Since S|, is a polynomial in II,, we have

5= X .

VENT

Therefore, by (3.32) and (3.29),

Isiplloay < > sl lplleay = Y lvsl - Ipw o Brllee
T

vENF VENF
< > sl 1Az iBall oy
VENT
2r . d(v
< X (2v8) Isllogry | max g s,
DEN :

and (3.28) follows. W

Remark 3.10 It is not difficult to see that the triples (T,II,,N7), T € A, form
an affine family of finite elements in the sense of [9, p. 87], and (7, II,, N7) plays
the role of the reference finite element for this family. Particularly, (3.30) shows that
(T, T1,, N7 is affine-equivalent to (7', T, N7), with By being the corresponding affine
mapping.
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Proof of Theorem 3.1. It follows from Lemma 3.8 and Lemma 3.9 that the only
spline s € Sp*(A) that satisfies vs = 0 for all v € N, is the zero function. In view
of (2.8), a standard linear algebra argument shows that for any real data a,, v € N,
there exists a unique spline s € S7*(A) such that vs = a, for all v € N. Particularly,
for every function f € C?'(2) the Hermite type interpolation problem

vs=vf forall ve~N

has a unique solution sy € Sp*(A), which proves the first statement of the theorem.
Let us fix a function f € C™(Q2) and a triangle T' € A. Without loss of generality
assume that (0,0) € 7. Then for the Taylor polynomial

. ] D] DJ J T
Bz, y) == z_: 2_: Tf)()xj yi—i

we have

o - m—a—f m—a— m' ym—m’
(333)  1D2DJ(f = Bl < iyragp by max 1D D™ flloe

for all a, 3> 0, a+ B < m. As a consequence, for every v € N7,

(3.34) pg—ﬁﬂgKmﬁﬂ”ImxHDMDmeM@

0<m

where K is a constant depending only on gq.
We have

(3.35) 1D DY(f — s)lw(ry < IDEDY(f = Blloe) + 1DS D) (B — 5p)l| et -
By the bivariate Markov inequality (see, for example, [10]),
(3.36) ID3 Dyplloery < Ka(hrsin)~*|Ipllogry  forall p €T,

where hr and @ are the diameter and the smallest angle of 7', respectively, and Ky
depends only on gq.

Since p — sy € Sp?(A) and (p — sy),,, € I, it follows from (3.36) and Lemma 3.9
that

IN

1D2 Dy (5 — 57) | oo () Ky (hysin )™ 7N — s7) pllow)

<_m@#*mmh<|w@—wm

*eNT

(3.37)
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where K3 depends only on ¢ and 7. By (3.34) and Lemma 3.8, since v(f — sf) =0
for all v € N, we have for every v* € N7
d(v* * ([ ~ d(v* %[~ d(v* *
WO =)l < BB - O+ AR - sp)

<
< K.h7 ax I1Dz" Dy~ fllo)

(3.38)

where K, depends only on r, ¢ and 6.
Since 01 > O, now (3.35), (3.33), (3.37) and (3.38) imply (3.2). H

Remark 3.11 It is easy to see from the above proof that Theorem 3.1 in fact holds
with 67 in place of Oa.

4 A Basis for S;”(A)

Let N' = {1}, where n = dim S;*(A) in view of (2.8). For every f € C*(9Q), it
follows from Theorem 3.1 that the interpolating spline s; € S;*(A) satisfying (3.1)

can be represented as
n

(4.1) sp= 3 (vif)si,

=1

where the fundamental functions s; € S;"”’(A), ¢t =1,...,n, are uniquely determined
by the conditions

(42) I/z'szdij, i,j:].,...,n.

Therefore, {s1,...,s,} is a basis for Sp*(A). The following theorem establishes some

useful properties of this basis.

Theorem 4.1 The fundamental functions si,...,s, form a basis for S;"”’(A) such
that

1) {s1,..-,8n} is locally linearly independent, i.e., for every open B C ) the
subsystem {s; : BNsupps; # 0} is linearly independent on B,

2) {81,---,5n} 18 least supported, i.e., for every basis {by,...,by} of S;*(A) there
exists a permutation m of {1,...,n} such that

supp s; C supp br;), Jforall 1=1,...,n,
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3) for each i =1,...,n, supp s; is either a triangle or the union of some triangles

sharing one common vertez,
4) th?(”") < sillc@) < KK h?(”i), where

h; == max hrp,
T'Csupp $;

K, K5 depend only on r, q and Oa, and

ng{l’ _ ifueN\N,
sin""0x, ifv; €N,

with _ _ 3 5
N = U N, Op = 1%1612 Or,
TeA
5) the corresponding normalized basis {s,...,s:}, with s = hi_d(ui)s,-, is stable

in the sense that

S K

5
) | < e < - ;

(4.9 Komaxlai] < |3 sl < o ma o

i=1
where K4 and Ky depend only on r, ¢ and Oa.

Proof. 1) As shown in [11], a system of functions {si,...,s,} C S;(A)\ {0} such
that II, C span {sy,...,s,} is locally linearly independent if and only if

(4.4) card {i: T C supp s;} < (73?) = dim1II,, for every T € A.

Since IT, C S;*(A), we only have to check (4.4). Fix a triangle T'in A. By applying
consecutively Lemma 3.9 and Lemma 3.8 (the latter with f = 0), we get

45)  llsqzllea) < Ko ( max_ A |vs;| + sin "0 max by |vs;) ) !

VENT\NT VENT
where Kg depends only on r, ¢ and 67. Therefore, Sij, =0 if v; ¢ N, so that (4.4)
follows from (3.14).

2) Least supportedness of {s,...,s,} follows from its local linear independence
in view of [5, Theorem 3.4].
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3) As we have seen, T C supp s; implies v; € Np. Therefore, it suffices to show
that for each fixed v € N the set

T, ={Te€A:veNr}

consists either of a single triangle or of some triangles sharing one common vertex.
Since
N={JN@w U JN(EuJND)
v e T

we consider several cases. First, if v € N(T) for some T € A, then obviously

T, = {T}. If v € N(e) for some interior edge e of A, then 7, = {73,732}, where

Ty and T3 are the two triangels sharing the edge e. (If e is a boundary edge, then,

of course, there is only one such triangle 7', and 7, = {T'}.) Finally, assume that

veNw ) for some vertex v of A. Then v € Ny 1mphes v € Nr(v). The latter is

possible only for the triangles T that are attached to v. Hence, 7, C{T € A: v € T}.
4) By (4.5),

d(v;
Isillew = max lsqllea < Kok, max by = Kgk; b,

which gives the upper bound. Furthermore, by Markov inequality (3.36),
1=|ys < K7h;d(w)||si|T||c(T), for some T C supp s;,
where K7 depends only on ¢ and fa. It is not difficult to check that

max hry < Kg min hp
TCsupp s; T'Csupp s;

where Ky depends only on ¢ and 0 (see, e.g., [18, Lemma 3.2]). Therefore,
“81'”0((2) > K7_1K8—2Th;i(w),

and the lower bound is also shown.
5) We fix {a;}?, and set s = >_" , a;si. Let z € T € A. By (4.4) and (4.5) we
have

Zaz 2)| < max\az| Z |s7(2)] < max|a,\( %) Kg sin "0r,
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which proves the upper bound for ||s||¢(q). Moreover, let |a;| = max |a;|. Then
3

h_d(Vj)

I/jS = j aj.

Therefore, in view of Markov inequality, we have for some 7" C supp s,
d(v; d(v;), —d(v;
la] = b5l < Keh ™ Wl e < KK |1sllow,

which completes the proof. B

Remark 4.2 A similar interpolation scheme can be done for the superspline space
Sy?(A) with any p within the range

1 -1
T+ [%} < p < min {27’, [%]}

The only necessary change in the construction is that in the definition of N (e) one
should take

Ky =min{g—2p—1+p, ¢—3r—1—(r—p)mod2} .
All results of Section 3 and Section 4 remain valid.

We conclude the paper with a discussion of the results of Section 4.

First of all, it immediately follows from Theorem 3.1 that the norm of the inter-
polation operator s; : C*"(©2) — Si*(A) is bounded by a constant which depends
only on r,q and the smallest angle 5 in A. On the other hand, it is easy to see
that some of the fundamental functions s; can grow unboundedly if the triangulation
contains near-degenerate edges. (In Theorem 4.1 we could only estimate ||s;||c)
with a constant depending on f.) This seems to be controversial at first glance. We
will try to explain this phenomenon. Let v be a vertex of the triangulation A. The
nodal values v in the set N (v) are linearly independent, as we have shown, if they
are considered as linear functionals on the spline space S;?(A). Contrary to this,
the nodal values v € N (v) corresponding to the partial derivatives of the same order
k, with p < k < 2r, do stay in a linear relation as linear functionals on the space
C?(Q). (Recall that S;*(A) is not a subspace of C*"(€).) Indeed, there exist exactly
k + 1 linearly independent partial derivatives D2 sz (f)(v), with a + 8 = k, for any

1
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k-times differentiable function f, and we certainly have in V' (v) more than k+1 nodal
values of this type. As a consequence, the coefficients v; f in (4.1) satisfy some linear
relations reflecting the fact that f is 2r-times differentiable at each vertex. This leads
to some cancellations in the sum and makes possible estimation (3.2).

Let us also remark that, according to Theorem 4.1, 2), our basis is best possible
for the space S;*(A) in regard to the size of the supports of the basis functions.
As mentioned in Introduction, it shares this property with the basis for S;*(A)
constructed in [16]. The bases in [7, 18] fail to be least supported, but they have
the advantage that the stability inequality (4.3) holds for them without sin"f, in
the right hand side, i.e., they enjoy stability even in the presence of near-degenerate
edges.

Finally, we note that the property of local linear independence established for our
basis in Theorem 4.1, 1), plays an important role in the theory of almost interpolation
(see [11, 13, 14]).
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